不同层对提高 Al/ZnO/ZnMnO/CIGSSe/Cu2O/Ni 太阳能电池光伏性能的影响

IF 1.204 Q3 Energy Applied Solar Energy Pub Date : 2024-07-26 DOI:10.3103/S0003701X23601357
Sawrab Sikder, Rakib Hosen, Md. Shihab Uddin, Md. Manjurul Haque, Hayati Mamur, Mohammad Ruhul Amin Bhuiyan
{"title":"不同层对提高 Al/ZnO/ZnMnO/CIGSSe/Cu2O/Ni 太阳能电池光伏性能的影响","authors":"Sawrab Sikder,&nbsp;Rakib Hosen,&nbsp;Md. Shihab Uddin,&nbsp;Md. Manjurul Haque,&nbsp;Hayati Mamur,&nbsp;Mohammad Ruhul Amin Bhuiyan","doi":"10.3103/S0003701X23601357","DOIUrl":null,"url":null,"abstract":"<p>Copper Indium Gallium Sulfide Selenide (CIGSSe)-based solar cells, featuring Al/ZnO/ZnMnO/CIGSSe/Cu<sub>2</sub>O/Ni layers, are optimized using the solar cell capacitance simulator (SCAPS) for enhanced photovoltaic (PV) performance. The solar cell design incorporates a CIGSSe absorber layer, a zinc manganese oxide (ZnMnO) buffer layer, and a zinc oxide (ZnO) window layer. The upper/top and back contacts are made of aluminum (Al) and nickel (Ni), respectively, with an electron-reflected-hole transport layer (ER-HTL) of cuprous oxide (Cu<sub>2</sub>O). The performance of the proposed structure can be improved by adjusting the thicknesses of the absorber, buffer, and window layers, along with the acceptor and donor concentrations of the absorber and buffer layers, series and shunt resistance, and temperature. The configuration improves the cell structure’s open-circuit voltage (<i>V</i><sub>OC</sub>), short-circuit current (<i>J</i><sub>SC</sub>), fill factor (FF), and power conversion efficiency (PCE). For optimal outcomes, set the acceptor and donor concentrations in the absorber and buffer layers to 10<sup>17</sup> and 10<sup>18</sup> cm<sup>–3</sup>, respectively. Furthermore, keep the thicknesses of the absorber layer at 2000 nm, the window and buffer layers at 50 nm, and the ER-HTL at 10 nm. The optimized model demonstrates PV performance characteristics of 1.0642 V for <i>V</i><sub>OC</sub>, 36.10 mA/cm<sup>2</sup> for <i>J</i><sub>SC</sub>, 81.06% for FF, and 31.15% for PCE under the AM1.5G spectrum. Furthermore, it exhibits a quantum efficiency of around 95.23% at visible wavelengths.</p>","PeriodicalId":475,"journal":{"name":"Applied Solar Energy","volume":"60 2","pages":"201 - 214"},"PeriodicalIF":1.2040,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Different Layers on Enhancing the PV Performance of Al/ZnO/ZnMnO/CIGSSe/Cu2O/Ni Solar Cells\",\"authors\":\"Sawrab Sikder,&nbsp;Rakib Hosen,&nbsp;Md. Shihab Uddin,&nbsp;Md. Manjurul Haque,&nbsp;Hayati Mamur,&nbsp;Mohammad Ruhul Amin Bhuiyan\",\"doi\":\"10.3103/S0003701X23601357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Copper Indium Gallium Sulfide Selenide (CIGSSe)-based solar cells, featuring Al/ZnO/ZnMnO/CIGSSe/Cu<sub>2</sub>O/Ni layers, are optimized using the solar cell capacitance simulator (SCAPS) for enhanced photovoltaic (PV) performance. The solar cell design incorporates a CIGSSe absorber layer, a zinc manganese oxide (ZnMnO) buffer layer, and a zinc oxide (ZnO) window layer. The upper/top and back contacts are made of aluminum (Al) and nickel (Ni), respectively, with an electron-reflected-hole transport layer (ER-HTL) of cuprous oxide (Cu<sub>2</sub>O). The performance of the proposed structure can be improved by adjusting the thicknesses of the absorber, buffer, and window layers, along with the acceptor and donor concentrations of the absorber and buffer layers, series and shunt resistance, and temperature. The configuration improves the cell structure’s open-circuit voltage (<i>V</i><sub>OC</sub>), short-circuit current (<i>J</i><sub>SC</sub>), fill factor (FF), and power conversion efficiency (PCE). For optimal outcomes, set the acceptor and donor concentrations in the absorber and buffer layers to 10<sup>17</sup> and 10<sup>18</sup> cm<sup>–3</sup>, respectively. Furthermore, keep the thicknesses of the absorber layer at 2000 nm, the window and buffer layers at 50 nm, and the ER-HTL at 10 nm. The optimized model demonstrates PV performance characteristics of 1.0642 V for <i>V</i><sub>OC</sub>, 36.10 mA/cm<sup>2</sup> for <i>J</i><sub>SC</sub>, 81.06% for FF, and 31.15% for PCE under the AM1.5G spectrum. Furthermore, it exhibits a quantum efficiency of around 95.23% at visible wavelengths.</p>\",\"PeriodicalId\":475,\"journal\":{\"name\":\"Applied Solar Energy\",\"volume\":\"60 2\",\"pages\":\"201 - 214\"},\"PeriodicalIF\":1.2040,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Solar Energy\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0003701X23601357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Solar Energy","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.3103/S0003701X23601357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

摘要 利用太阳能电池电容模拟器(SCAPS)对以铝/氧化锌/氧化锌锰/CIGSSe/Cu2O/Ni 层为特征的硒化铜铟镓(CIGSSe)太阳能电池进行了优化,以提高其光伏(PV)性能。太阳能电池设计包含一个 CIGSSe 吸收层、一个氧化锰锌(ZnMnO)缓冲层和一个氧化锌(ZnO)窗口层。上触点/顶触点和背触点分别由铝(Al)和镍(Ni)制成,电子反射空穴传输层(ER-HTL)由氧化亚铜(Cu2O)制成。通过调整吸收层、缓冲层和窗口层的厚度,以及吸收层和缓冲层的受体和供体浓度、串联和并联电阻以及温度,可以改善所建议结构的性能。这种配置可提高电池结构的开路电压 (VOC)、短路电流 (JSC)、填充因子 (FF) 和功率转换效率 (PCE)。为了达到最佳效果,吸收层和缓冲层中的受体和供体浓度应分别设置为 1017 和 1018 cm-3。此外,吸收层的厚度保持在 2000 纳米,窗口层和缓冲层的厚度保持在 50 纳米,ER-HTL 的厚度保持在 10 纳米。优化模型在 AM1.5G 频谱下的光伏性能特性为:VOC 为 1.0642 V,JSC 为 36.10 mA/cm2,FF 为 81.06%,PCE 为 31.15%。此外,它在可见光波长下的量子效率约为 95.23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Different Layers on Enhancing the PV Performance of Al/ZnO/ZnMnO/CIGSSe/Cu2O/Ni Solar Cells

Copper Indium Gallium Sulfide Selenide (CIGSSe)-based solar cells, featuring Al/ZnO/ZnMnO/CIGSSe/Cu2O/Ni layers, are optimized using the solar cell capacitance simulator (SCAPS) for enhanced photovoltaic (PV) performance. The solar cell design incorporates a CIGSSe absorber layer, a zinc manganese oxide (ZnMnO) buffer layer, and a zinc oxide (ZnO) window layer. The upper/top and back contacts are made of aluminum (Al) and nickel (Ni), respectively, with an electron-reflected-hole transport layer (ER-HTL) of cuprous oxide (Cu2O). The performance of the proposed structure can be improved by adjusting the thicknesses of the absorber, buffer, and window layers, along with the acceptor and donor concentrations of the absorber and buffer layers, series and shunt resistance, and temperature. The configuration improves the cell structure’s open-circuit voltage (VOC), short-circuit current (JSC), fill factor (FF), and power conversion efficiency (PCE). For optimal outcomes, set the acceptor and donor concentrations in the absorber and buffer layers to 1017 and 1018 cm–3, respectively. Furthermore, keep the thicknesses of the absorber layer at 2000 nm, the window and buffer layers at 50 nm, and the ER-HTL at 10 nm. The optimized model demonstrates PV performance characteristics of 1.0642 V for VOC, 36.10 mA/cm2 for JSC, 81.06% for FF, and 31.15% for PCE under the AM1.5G spectrum. Furthermore, it exhibits a quantum efficiency of around 95.23% at visible wavelengths.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Solar Energy
Applied Solar Energy Energy-Renewable Energy, Sustainability and the Environment
CiteScore
2.50
自引率
0.00%
发文量
0
期刊介绍: Applied Solar Energy  is an international peer reviewed journal covers various topics of research and development studies on solar energy conversion and use: photovoltaics, thermophotovoltaics, water heaters, passive solar heating systems, drying of agricultural production, water desalination, solar radiation condensers, operation of Big Solar Oven, combined use of solar energy and traditional energy sources, new semiconductors for solar cells and thermophotovoltaic system photocells, engines for autonomous solar stations.
期刊最新文献
Exploring Energy Performance of Taraxacum Leaves Undergoing Hybrid Forced Convection Solar Dryer Solar Water Heating Systems Performance with Different Enhancement Techniques: A Detailed Review Analysis of Dye-Sensitized Solar Cells Based on ZnO and ZnO–Ni Photoanodes with Various Ni Concentrations Experimental Investigation of a Parabolic Solar Trough Collector with Titanium-Coated Receiver to Heat Water in a Tank for Domestic Uses Plasma Vacuum-Arc Treatment Technology for the Metal Pipe Surfaces of Solar Thermal Power Plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1