A. G. Frank, N. P. Kyrie, S. A. Savinov, I. R. Nugaev, D. E. Kharlachev, V. A. Ivanov, V. D. Stepakhin
{"title":"电流片和实验天体物理学的动态过程","authors":"A. G. Frank, N. P. Kyrie, S. A. Savinov, I. R. Nugaev, D. E. Kharlachev, V. A. Ivanov, V. D. Stepakhin","doi":"10.1134/S1063772924700392","DOIUrl":null,"url":null,"abstract":"<p>The results of experimental research of the dynamics of current sheets, which are formed in laboratory experiments at the GPI RAS, are presented as a brief review. It is shown that the most significant features of phenomena like solar flares can be reproduced in laboratory conditions. These features include the relatively slow accumulation of the magnetic energy in the course of the current sheet formation, the rapid release of the energy during the disruption of the current sheet, acceleration of plasma flows, ultrafast plasma heating, and effective particle’s acceleration. A qualitative similarity has been established between the basic characteristics of current sheets in the tail region of the Earth’s magnetosphere and in laboratory conditions. A comparison of a number of fundamental dimensionless parameters indicates the possibility of quantitative laboratory modeling of processes occurring in the magnetosphere. It is concluded that experimental research of the dynamics of current sheets and magnetic reconnection processes represent one of the promising areas of the laboratory astrophysics.</p>","PeriodicalId":55440,"journal":{"name":"Astronomy Reports","volume":"68 4","pages":"406 - 417"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Processes in Current Sheets and Experimental Laboratory Astrophysics\",\"authors\":\"A. G. Frank, N. P. Kyrie, S. A. Savinov, I. R. Nugaev, D. E. Kharlachev, V. A. Ivanov, V. D. Stepakhin\",\"doi\":\"10.1134/S1063772924700392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The results of experimental research of the dynamics of current sheets, which are formed in laboratory experiments at the GPI RAS, are presented as a brief review. It is shown that the most significant features of phenomena like solar flares can be reproduced in laboratory conditions. These features include the relatively slow accumulation of the magnetic energy in the course of the current sheet formation, the rapid release of the energy during the disruption of the current sheet, acceleration of plasma flows, ultrafast plasma heating, and effective particle’s acceleration. A qualitative similarity has been established between the basic characteristics of current sheets in the tail region of the Earth’s magnetosphere and in laboratory conditions. A comparison of a number of fundamental dimensionless parameters indicates the possibility of quantitative laboratory modeling of processes occurring in the magnetosphere. It is concluded that experimental research of the dynamics of current sheets and magnetic reconnection processes represent one of the promising areas of the laboratory astrophysics.</p>\",\"PeriodicalId\":55440,\"journal\":{\"name\":\"Astronomy Reports\",\"volume\":\"68 4\",\"pages\":\"406 - 417\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy Reports\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063772924700392\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063772924700392","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Dynamic Processes in Current Sheets and Experimental Laboratory Astrophysics
The results of experimental research of the dynamics of current sheets, which are formed in laboratory experiments at the GPI RAS, are presented as a brief review. It is shown that the most significant features of phenomena like solar flares can be reproduced in laboratory conditions. These features include the relatively slow accumulation of the magnetic energy in the course of the current sheet formation, the rapid release of the energy during the disruption of the current sheet, acceleration of plasma flows, ultrafast plasma heating, and effective particle’s acceleration. A qualitative similarity has been established between the basic characteristics of current sheets in the tail region of the Earth’s magnetosphere and in laboratory conditions. A comparison of a number of fundamental dimensionless parameters indicates the possibility of quantitative laboratory modeling of processes occurring in the magnetosphere. It is concluded that experimental research of the dynamics of current sheets and magnetic reconnection processes represent one of the promising areas of the laboratory astrophysics.
期刊介绍:
Astronomy Reports is an international peer reviewed journal that publishes original papers on astronomical topics, including theoretical and observational astrophysics, physics of the Sun, planetary astrophysics, radio astronomy, stellar astronomy, celestial mechanics, and astronomy methods and instrumentation.