词库选择参数分析:利用诊断指标改变种群规模和测试用例冗余度

Jose Guadalupe Hernandez, Anil Kumar Saini, Jason H. Moore
{"title":"词库选择参数分析:利用诊断指标改变种群规模和测试用例冗余度","authors":"Jose Guadalupe Hernandez, Anil Kumar Saini, Jason H. Moore","doi":"arxiv-2407.15056","DOIUrl":null,"url":null,"abstract":"Lexicase selection is a successful parent selection method in genetic\nprogramming that has outperformed other methods across multiple benchmark\nsuites. Unlike other selection methods that require explicit parameters to\nfunction, such as tournament size in tournament selection, lexicase selection\ndoes not. However, if evolutionary parameters like population size and number\nof generations affect the effectiveness of a selection method, then lexicase's\nperformance may also be impacted by these `hidden' parameters. Here, we study\nhow these hidden parameters affect lexicase's ability to exploit gradients and\nmaintain specialists using diagnostic metrics. By varying the population size\nwith a fixed evaluation budget, we show that smaller populations tend to have\ngreater exploitation capabilities, whereas larger populations tend to maintain\nmore specialists. We also consider the effect redundant test cases have on\nspecialist maintenance, and find that high redundancy may hinder the ability to\noptimize and maintain specialists, even for larger populations. Ultimately, we\nhighlight that population size, evaluation budget, and test cases must be\ncarefully considered for the characteristics of the problem being solved.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lexicase Selection Parameter Analysis: Varying Population Size and Test Case Redundancy with Diagnostic Metrics\",\"authors\":\"Jose Guadalupe Hernandez, Anil Kumar Saini, Jason H. Moore\",\"doi\":\"arxiv-2407.15056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lexicase selection is a successful parent selection method in genetic\\nprogramming that has outperformed other methods across multiple benchmark\\nsuites. Unlike other selection methods that require explicit parameters to\\nfunction, such as tournament size in tournament selection, lexicase selection\\ndoes not. However, if evolutionary parameters like population size and number\\nof generations affect the effectiveness of a selection method, then lexicase's\\nperformance may also be impacted by these `hidden' parameters. Here, we study\\nhow these hidden parameters affect lexicase's ability to exploit gradients and\\nmaintain specialists using diagnostic metrics. By varying the population size\\nwith a fixed evaluation budget, we show that smaller populations tend to have\\ngreater exploitation capabilities, whereas larger populations tend to maintain\\nmore specialists. We also consider the effect redundant test cases have on\\nspecialist maintenance, and find that high redundancy may hinder the ability to\\noptimize and maintain specialists, even for larger populations. Ultimately, we\\nhighlight that population size, evaluation budget, and test cases must be\\ncarefully considered for the characteristics of the problem being solved.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.15056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

词性选择是遗传编程中一种成功的父本选择方法,在多个基准测试中的表现优于其他方法。与其他需要明确参数才能发挥作用的选择方法(如锦标赛选择中的锦标赛规模)不同,词性选择不需要明确参数。然而,如果种群规模和世代数等进化参数会影响选择方法的有效性,那么lexicase的性能也可能受到这些 "隐藏 "参数的影响。在这里,我们使用诊断指标研究了这些隐藏参数如何影响lexicase利用梯度和保持专家的能力。通过在固定的评估预算下改变种群大小,我们发现较小的种群往往具有更强的利用能力,而较大的种群往往能维持更多的专家。我们还考虑了冗余测试用例对专家维护的影响,发现高冗余度可能会阻碍优化和维护专家的能力,即使对于较大的种群也是如此。最后,我们强调,必须根据所要解决的问题的特点,认真考虑群体规模、评估预算和测试用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lexicase Selection Parameter Analysis: Varying Population Size and Test Case Redundancy with Diagnostic Metrics
Lexicase selection is a successful parent selection method in genetic programming that has outperformed other methods across multiple benchmark suites. Unlike other selection methods that require explicit parameters to function, such as tournament size in tournament selection, lexicase selection does not. However, if evolutionary parameters like population size and number of generations affect the effectiveness of a selection method, then lexicase's performance may also be impacted by these `hidden' parameters. Here, we study how these hidden parameters affect lexicase's ability to exploit gradients and maintain specialists using diagnostic metrics. By varying the population size with a fixed evaluation budget, we show that smaller populations tend to have greater exploitation capabilities, whereas larger populations tend to maintain more specialists. We also consider the effect redundant test cases have on specialist maintenance, and find that high redundancy may hinder the ability to optimize and maintain specialists, even for larger populations. Ultimately, we highlight that population size, evaluation budget, and test cases must be carefully considered for the characteristics of the problem being solved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1