用遗传编程揭示强化学习的决策过程

Manuel Eberhardinger, Florian Rupp, Johannes Maucher, Setareh Maghsudi
{"title":"用遗传编程揭示强化学习的决策过程","authors":"Manuel Eberhardinger, Florian Rupp, Johannes Maucher, Setareh Maghsudi","doi":"arxiv-2407.14714","DOIUrl":null,"url":null,"abstract":"Despite tremendous progress, machine learning and deep learning still suffer\nfrom incomprehensible predictions. Incomprehensibility, however, is not an\noption for the use of (deep) reinforcement learning in the real world, as\nunpredictable actions can seriously harm the involved individuals. In this\nwork, we propose a genetic programming framework to generate explanations for\nthe decision-making process of already trained agents by imitating them with\nprograms. Programs are interpretable and can be executed to generate\nexplanations of why the agent chooses a particular action. Furthermore, we\nconduct an ablation study that investigates how extending the domain-specific\nlanguage by using library learning alters the performance of the method. We\ncompare our results with the previous state of the art for this problem and\nshow that we are comparable in performance but require much less hardware\nresources and computation time.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Decision-Making Process in Reinforcement Learning with Genetic Programming\",\"authors\":\"Manuel Eberhardinger, Florian Rupp, Johannes Maucher, Setareh Maghsudi\",\"doi\":\"arxiv-2407.14714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite tremendous progress, machine learning and deep learning still suffer\\nfrom incomprehensible predictions. Incomprehensibility, however, is not an\\noption for the use of (deep) reinforcement learning in the real world, as\\nunpredictable actions can seriously harm the involved individuals. In this\\nwork, we propose a genetic programming framework to generate explanations for\\nthe decision-making process of already trained agents by imitating them with\\nprograms. Programs are interpretable and can be executed to generate\\nexplanations of why the agent chooses a particular action. Furthermore, we\\nconduct an ablation study that investigates how extending the domain-specific\\nlanguage by using library learning alters the performance of the method. We\\ncompare our results with the previous state of the art for this problem and\\nshow that we are comparable in performance but require much less hardware\\nresources and computation time.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.14714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管取得了巨大进步,但机器学习和深度学习仍然存在难以理解的预测问题。然而,在现实世界中使用(深度)强化学习时,无法理解并不是一种选择,因为无法预测的行动可能会严重伤害相关个体。在这项工作中,我们提出了一个遗传编程框架,通过用程序模仿已经受过训练的代理,为其决策过程生成解释。程序是可解释的,可以通过执行程序来解释代理选择特定行动的原因。此外,我们还进行了一项消融研究,调查通过使用库学习扩展特定领域语言如何改变该方法的性能。我们将我们的结果与该问题的前沿技术进行了比较,结果表明我们的性能相当,但所需的硬件资源和计算时间要少得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unveiling the Decision-Making Process in Reinforcement Learning with Genetic Programming
Despite tremendous progress, machine learning and deep learning still suffer from incomprehensible predictions. Incomprehensibility, however, is not an option for the use of (deep) reinforcement learning in the real world, as unpredictable actions can seriously harm the involved individuals. In this work, we propose a genetic programming framework to generate explanations for the decision-making process of already trained agents by imitating them with programs. Programs are interpretable and can be executed to generate explanations of why the agent chooses a particular action. Furthermore, we conduct an ablation study that investigates how extending the domain-specific language by using library learning alters the performance of the method. We compare our results with the previous state of the art for this problem and show that we are comparable in performance but require much less hardware resources and computation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1