{"title":"基于关系强度理论和反馈机制的社交网络信息动态传播研究","authors":"Mengna Zhang, Liming Liu, Yingxu Wang","doi":"10.3389/fphy.2024.1327161","DOIUrl":null,"url":null,"abstract":"Introduction: Studying the main factors and related paths of rumor propagation contributes to the precise governance of rumor information in social networks. Most existing network representation learning methods do not fit with real-world information propagation networks well, and the network cannot effectively model the temporal characteristics and dynamic evolution features of rumor information propagation.Methods: Our study proposes a new dynamic network representation model for information propagation. Additionally, the study introduces a feedback mechanism where the latest node representations are fed back to neighboring nodes.Results: The method solves the problem of delayed network representation and improves network representation performance.Discussion: We conducted experimental simulations, and the results indicate that a higher level of trust contributes to stable group relationships and converging opinions, reducing the likelihood of opinion dispersion. Furthermore, novelty of topics, and interactivity between users, and opinion leaders exhibit distinct characteristics in guiding public opinion. The viewpoint evolution of the newly constructed dynamic network representation model aligns more closely with viewpoint evolution in real-world social networks.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":"216 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the dynamic spread of information in social networks based on relationship strength theory and feedback mechanism\",\"authors\":\"Mengna Zhang, Liming Liu, Yingxu Wang\",\"doi\":\"10.3389/fphy.2024.1327161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Studying the main factors and related paths of rumor propagation contributes to the precise governance of rumor information in social networks. Most existing network representation learning methods do not fit with real-world information propagation networks well, and the network cannot effectively model the temporal characteristics and dynamic evolution features of rumor information propagation.Methods: Our study proposes a new dynamic network representation model for information propagation. Additionally, the study introduces a feedback mechanism where the latest node representations are fed back to neighboring nodes.Results: The method solves the problem of delayed network representation and improves network representation performance.Discussion: We conducted experimental simulations, and the results indicate that a higher level of trust contributes to stable group relationships and converging opinions, reducing the likelihood of opinion dispersion. Furthermore, novelty of topics, and interactivity between users, and opinion leaders exhibit distinct characteristics in guiding public opinion. The viewpoint evolution of the newly constructed dynamic network representation model aligns more closely with viewpoint evolution in real-world social networks.\",\"PeriodicalId\":12507,\"journal\":{\"name\":\"Frontiers in Physics\",\"volume\":\"216 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3389/fphy.2024.1327161\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fphy.2024.1327161","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Research on the dynamic spread of information in social networks based on relationship strength theory and feedback mechanism
Introduction: Studying the main factors and related paths of rumor propagation contributes to the precise governance of rumor information in social networks. Most existing network representation learning methods do not fit with real-world information propagation networks well, and the network cannot effectively model the temporal characteristics and dynamic evolution features of rumor information propagation.Methods: Our study proposes a new dynamic network representation model for information propagation. Additionally, the study introduces a feedback mechanism where the latest node representations are fed back to neighboring nodes.Results: The method solves the problem of delayed network representation and improves network representation performance.Discussion: We conducted experimental simulations, and the results indicate that a higher level of trust contributes to stable group relationships and converging opinions, reducing the likelihood of opinion dispersion. Furthermore, novelty of topics, and interactivity between users, and opinion leaders exhibit distinct characteristics in guiding public opinion. The viewpoint evolution of the newly constructed dynamic network representation model aligns more closely with viewpoint evolution in real-world social networks.
期刊介绍:
Frontiers in Physics publishes rigorously peer-reviewed research across the entire field, from experimental, to computational and theoretical physics. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, engineers and the public worldwide.