{"title":"加强活化金属回收,加速铝和海水制氢","authors":"","doi":"10.1016/j.xcrp.2024.102121","DOIUrl":null,"url":null,"abstract":"<p>When activated, aluminum reacts with water to generate hydrogen gas, heat, and aluminum oxyhydroxide, a non-toxic and valuable commodity. This process serves as an efficient and cost-effective means of producing and transporting both hydrogen and thermal energy. The study presented here focuses on recovering a gallium-indium eutectic utilized as a surface coating to induce aluminum’s reactivity in water. The findings indicate that the addition of very low concentrations (0.02 M) of imidazole to seawater leads to rapid reactions being completed in under 10 min, enabling the retrieval and reuse of over 90% of the relatively costly gallium-indium eutectic and producing 99% of the anticipated hydrogen output based on the aluminum’s mass. Additionally, conducting the reaction at elevated temperatures ensures the swift and complete reaction of aluminum in saltwater.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"45 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced recovery of activation metals for accelerated hydrogen generation from aluminum and seawater\",\"authors\":\"\",\"doi\":\"10.1016/j.xcrp.2024.102121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>When activated, aluminum reacts with water to generate hydrogen gas, heat, and aluminum oxyhydroxide, a non-toxic and valuable commodity. This process serves as an efficient and cost-effective means of producing and transporting both hydrogen and thermal energy. The study presented here focuses on recovering a gallium-indium eutectic utilized as a surface coating to induce aluminum’s reactivity in water. The findings indicate that the addition of very low concentrations (0.02 M) of imidazole to seawater leads to rapid reactions being completed in under 10 min, enabling the retrieval and reuse of over 90% of the relatively costly gallium-indium eutectic and producing 99% of the anticipated hydrogen output based on the aluminum’s mass. Additionally, conducting the reaction at elevated temperatures ensures the swift and complete reaction of aluminum in saltwater.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2024.102121\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102121","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced recovery of activation metals for accelerated hydrogen generation from aluminum and seawater
When activated, aluminum reacts with water to generate hydrogen gas, heat, and aluminum oxyhydroxide, a non-toxic and valuable commodity. This process serves as an efficient and cost-effective means of producing and transporting both hydrogen and thermal energy. The study presented here focuses on recovering a gallium-indium eutectic utilized as a surface coating to induce aluminum’s reactivity in water. The findings indicate that the addition of very low concentrations (0.02 M) of imidazole to seawater leads to rapid reactions being completed in under 10 min, enabling the retrieval and reuse of over 90% of the relatively costly gallium-indium eutectic and producing 99% of the anticipated hydrogen output based on the aluminum’s mass. Additionally, conducting the reaction at elevated temperatures ensures the swift and complete reaction of aluminum in saltwater.
期刊介绍:
Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.