{"title":"VMF 漫反射:统一的粗糙漫反射 BRDF","authors":"Eugene d'Eon, Andrea Weidlich","doi":"10.1111/cgf.15149","DOIUrl":null,"url":null,"abstract":"<p>We present a practical analytic BRDF that approximates scattering from a generalized microfacet volume with a von Mises-Fischer NDF. Our BRDF seamlessly blends from smooth Lambertian, through moderately rough height fields with Beckmann-like statistics and into highly rough/porous behaviours that have been lacking from prior models. At maximum roughness, our model reduces to the recent Lambert-sphere BRDF. We validate our model by comparing to simulations of scattering from geometries with randomly-placed Lambertian spheres and show an improvement relative to a rough Beckmann BRDF with very high roughness.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VMF Diffuse: A unified rough diffuse BRDF\",\"authors\":\"Eugene d'Eon, Andrea Weidlich\",\"doi\":\"10.1111/cgf.15149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a practical analytic BRDF that approximates scattering from a generalized microfacet volume with a von Mises-Fischer NDF. Our BRDF seamlessly blends from smooth Lambertian, through moderately rough height fields with Beckmann-like statistics and into highly rough/porous behaviours that have been lacking from prior models. At maximum roughness, our model reduces to the recent Lambert-sphere BRDF. We validate our model by comparing to simulations of scattering from geometries with randomly-placed Lambertian spheres and show an improvement relative to a rough Beckmann BRDF with very high roughness.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"43 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15149\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15149","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
We present a practical analytic BRDF that approximates scattering from a generalized microfacet volume with a von Mises-Fischer NDF. Our BRDF seamlessly blends from smooth Lambertian, through moderately rough height fields with Beckmann-like statistics and into highly rough/porous behaviours that have been lacking from prior models. At maximum roughness, our model reduces to the recent Lambert-sphere BRDF. We validate our model by comparing to simulations of scattering from geometries with randomly-placed Lambertian spheres and show an improvement relative to a rough Beckmann BRDF with very high roughness.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.