学习不同的光栅化

IF 2.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computer Graphics Forum Pub Date : 2024-07-24 DOI:10.1111/cgf.15145
C. Wu, H. Mailee, Z. Montazeri, T. Ritschel
{"title":"学习不同的光栅化","authors":"C. Wu,&nbsp;H. Mailee,&nbsp;Z. Montazeri,&nbsp;T. Ritschel","doi":"10.1111/cgf.15145","DOIUrl":null,"url":null,"abstract":"<p>Differentiable rasterization changes the standard formulation of primitive rasterization — by enabling gradient flow from a pixel to its underlying triangles — using distribution functions in different stages of rendering, creating a “soft” version of the original rasterizer. However, choosing the optimal softening function that ensures the best performance and convergence to a desired goal requires trial and error. Previous work has analyzed and compared several combinations of softening. In this work, we take it a step further and, instead of making a combinatorial choice of softening operations, parameterize the continuous space of common softening operations. We study meta-learning tunable softness functions over a set of inverse rendering tasks (2D and 3D shape, pose and occlusion) so it generalizes to new and unseen differentiable rendering tasks with optimal softness.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning to Rasterize Differentiably\",\"authors\":\"C. Wu,&nbsp;H. Mailee,&nbsp;Z. Montazeri,&nbsp;T. Ritschel\",\"doi\":\"10.1111/cgf.15145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Differentiable rasterization changes the standard formulation of primitive rasterization — by enabling gradient flow from a pixel to its underlying triangles — using distribution functions in different stages of rendering, creating a “soft” version of the original rasterizer. However, choosing the optimal softening function that ensures the best performance and convergence to a desired goal requires trial and error. Previous work has analyzed and compared several combinations of softening. In this work, we take it a step further and, instead of making a combinatorial choice of softening operations, parameterize the continuous space of common softening operations. We study meta-learning tunable softness functions over a set of inverse rendering tasks (2D and 3D shape, pose and occlusion) so it generalizes to new and unseen differentiable rendering tasks with optimal softness.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"43 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15145\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15145","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

可微分光栅化改变了原始光栅化的标准表述--通过在渲染的不同阶段使用分布函数,实现从像素到其底层三角形的梯度流,从而创建出原始光栅化的 "软 "版本。然而,要选择最佳的软化函数,以确保最佳性能并收敛到预期目标,需要反复试验。之前的工作已经分析和比较了几种软化组合。在这项工作中,我们更进一步,不是对软化操作进行组合选择,而是对常见软化操作的连续空间进行参数化。我们在一组反渲染任务(二维和三维形状、姿势和遮挡)上研究元学习可调柔化函数,从而将其推广到具有最佳柔化效果的新的、未见的可微分渲染任务中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning to Rasterize Differentiably

Differentiable rasterization changes the standard formulation of primitive rasterization — by enabling gradient flow from a pixel to its underlying triangles — using distribution functions in different stages of rendering, creating a “soft” version of the original rasterizer. However, choosing the optimal softening function that ensures the best performance and convergence to a desired goal requires trial and error. Previous work has analyzed and compared several combinations of softening. In this work, we take it a step further and, instead of making a combinatorial choice of softening operations, parameterize the continuous space of common softening operations. We study meta-learning tunable softness functions over a set of inverse rendering tasks (2D and 3D shape, pose and occlusion) so it generalizes to new and unseen differentiable rendering tasks with optimal softness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
期刊最新文献
DiffPop: Plausibility-Guided Object Placement Diffusion for Image Composition Front Matter LGSur-Net: A Local Gaussian Surface Representation Network for Upsampling Highly Sparse Point Cloud 𝒢-Style: Stylized Gaussian Splatting iShapEditing: Intelligent Shape Editing with Diffusion Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1