{"title":"学习不同的光栅化","authors":"C. Wu, H. Mailee, Z. Montazeri, T. Ritschel","doi":"10.1111/cgf.15145","DOIUrl":null,"url":null,"abstract":"<p>Differentiable rasterization changes the standard formulation of primitive rasterization — by enabling gradient flow from a pixel to its underlying triangles — using distribution functions in different stages of rendering, creating a “soft” version of the original rasterizer. However, choosing the optimal softening function that ensures the best performance and convergence to a desired goal requires trial and error. Previous work has analyzed and compared several combinations of softening. In this work, we take it a step further and, instead of making a combinatorial choice of softening operations, parameterize the continuous space of common softening operations. We study meta-learning tunable softness functions over a set of inverse rendering tasks (2D and 3D shape, pose and occlusion) so it generalizes to new and unseen differentiable rendering tasks with optimal softness.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning to Rasterize Differentiably\",\"authors\":\"C. Wu, H. Mailee, Z. Montazeri, T. Ritschel\",\"doi\":\"10.1111/cgf.15145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Differentiable rasterization changes the standard formulation of primitive rasterization — by enabling gradient flow from a pixel to its underlying triangles — using distribution functions in different stages of rendering, creating a “soft” version of the original rasterizer. However, choosing the optimal softening function that ensures the best performance and convergence to a desired goal requires trial and error. Previous work has analyzed and compared several combinations of softening. In this work, we take it a step further and, instead of making a combinatorial choice of softening operations, parameterize the continuous space of common softening operations. We study meta-learning tunable softness functions over a set of inverse rendering tasks (2D and 3D shape, pose and occlusion) so it generalizes to new and unseen differentiable rendering tasks with optimal softness.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"43 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15145\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15145","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Differentiable rasterization changes the standard formulation of primitive rasterization — by enabling gradient flow from a pixel to its underlying triangles — using distribution functions in different stages of rendering, creating a “soft” version of the original rasterizer. However, choosing the optimal softening function that ensures the best performance and convergence to a desired goal requires trial and error. Previous work has analyzed and compared several combinations of softening. In this work, we take it a step further and, instead of making a combinatorial choice of softening operations, parameterize the continuous space of common softening operations. We study meta-learning tunable softness functions over a set of inverse rendering tasks (2D and 3D shape, pose and occlusion) so it generalizes to new and unseen differentiable rendering tasks with optimal softness.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.