实现自动功能方程证明:基准数据集和特定领域的上下文代理

Mahdi Buali, Robert Hoehndorf
{"title":"实现自动功能方程证明:基准数据集和特定领域的上下文代理","authors":"Mahdi Buali, Robert Hoehndorf","doi":"arxiv-2407.14521","DOIUrl":null,"url":null,"abstract":"Automated Theorem Proving (ATP) faces challenges due to its complexity and\ncomputational demands. Recent work has explored using Large Language Models\n(LLMs) for ATP action selection, but these methods can be resource-intensive.\nThis study introduces FEAS, an agent that enhances the COPRA in-context\nlearning framework within Lean. FEAS refines prompt generation, response\nparsing, and incorporates domain-specific heuristics for functional equations.\nIt introduces FunEq, a curated dataset of functional equation problems with\nvarying difficulty. FEAS outperforms baselines on FunEq, particularly with the\nintegration of domain-specific heuristics. The results demonstrate FEAS's\neffectiveness in generating and formalizing high-level proof strategies into\nLean proofs, showcasing the potential of tailored approaches for specific ATP\nchallenges.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Automated Functional Equation Proving: A Benchmark Dataset and A Domain-Specific In-Context Agent\",\"authors\":\"Mahdi Buali, Robert Hoehndorf\",\"doi\":\"arxiv-2407.14521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated Theorem Proving (ATP) faces challenges due to its complexity and\\ncomputational demands. Recent work has explored using Large Language Models\\n(LLMs) for ATP action selection, but these methods can be resource-intensive.\\nThis study introduces FEAS, an agent that enhances the COPRA in-context\\nlearning framework within Lean. FEAS refines prompt generation, response\\nparsing, and incorporates domain-specific heuristics for functional equations.\\nIt introduces FunEq, a curated dataset of functional equation problems with\\nvarying difficulty. FEAS outperforms baselines on FunEq, particularly with the\\nintegration of domain-specific heuristics. The results demonstrate FEAS's\\neffectiveness in generating and formalizing high-level proof strategies into\\nLean proofs, showcasing the potential of tailored approaches for specific ATP\\nchallenges.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.14521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动定理证明(ATP)因其复杂性和计算需求而面临挑战。最近的工作探索了使用大型语言模型(LLMs)进行 ATP 动作选择,但这些方法可能会耗费大量资源。本研究介绍了 FEAS,它是一种在 Lean 中增强 COPRA 上下文学习框架的代理。FEAS 改进了提示生成、响应解析,并纳入了针对特定领域的函数方程启发式。FEAS 引入了 FunEq,这是一个难度各异的函数方程问题数据集。FEAS 在 FunEq 上的表现优于基线,特别是在集成了特定领域启发式后。结果证明了 FEAS 在生成高层次证明策略并将其形式化为精益证明方面的有效性,展示了针对特定 ATP 挑战的定制方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Automated Functional Equation Proving: A Benchmark Dataset and A Domain-Specific In-Context Agent
Automated Theorem Proving (ATP) faces challenges due to its complexity and computational demands. Recent work has explored using Large Language Models (LLMs) for ATP action selection, but these methods can be resource-intensive. This study introduces FEAS, an agent that enhances the COPRA in-context learning framework within Lean. FEAS refines prompt generation, response parsing, and incorporates domain-specific heuristics for functional equations. It introduces FunEq, a curated dataset of functional equation problems with varying difficulty. FEAS outperforms baselines on FunEq, particularly with the integration of domain-specific heuristics. The results demonstrate FEAS's effectiveness in generating and formalizing high-level proof strategies into Lean proofs, showcasing the potential of tailored approaches for specific ATP challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1