Ali R. Jalalvand , Maziar Farshadnia , Faramarz Jalili , Cyrus Jalili
{"title":"一种新型智能计算机辅助电化学传感器,用于提取并同时测定苹果和梨果实样品中的棒曲霉素和柠檬霉素","authors":"Ali R. Jalalvand , Maziar Farshadnia , Faramarz Jalili , Cyrus Jalili","doi":"10.1016/j.chemolab.2024.105188","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, a novel electrochemical sensor was fabricated for simultaneous determination of patulin (PT) and citrinin (CT) in apple and pear fruit samples. A glassy carbon electrode (GCE) was modified with graphene-multiwalled carbon nanotubes-ionic liquid (Gr-MWCNTs-IL) which was used as a platform to electrochemical synthesis of molecularly imprinted polymers (MIPs) by using PT and CT as templates, maleic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross linker with the aim of preconcentration and simultaneous determination of the PT and CT. Experimental variables affecting fabrication of the structure of the sensor and hydrodynamic differential pulse voltammetric (HDPV) response of the sensor were optimized by a small central composite design and desirability function. After optimization, the HDPV responses of the sensor were calibrated by multivariate calibration methods in the ranges of 0.5–13 fM and 1.5–18 fM for PT and CT, respectively, with the help of PLS-1, RBF-PLS, rPLS, LS-SVM, and RBF-ANN with the aim of selecting the best algorithm to assist the sensor. Our results confirmed the best performance was observed from RBF-ANN which was used for the analysis of apple and pear fruit samples. Limit of detections of the sensor assisted by RBF-ANN for determination of PT and CT were 0.08 and 0.61 fM, respectively. Several commercial brands were analyzed by the use of sensor assisted by RBF-ANN and HPLC-UV, and the results confirmed performance of the sensor was admirable and comparable with the reference method with lower cost, faster response, and easier procedure which made it to be a reliable alternative method for simultaneous determination of PT and CT in real matrices.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"252 ","pages":"Article 105188"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel, intelligent and computer-assisted electrochemical sensor for extraction and simultaneous determination of patulin and citrinin in apple and pear fruit samples\",\"authors\":\"Ali R. Jalalvand , Maziar Farshadnia , Faramarz Jalili , Cyrus Jalili\",\"doi\":\"10.1016/j.chemolab.2024.105188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, a novel electrochemical sensor was fabricated for simultaneous determination of patulin (PT) and citrinin (CT) in apple and pear fruit samples. A glassy carbon electrode (GCE) was modified with graphene-multiwalled carbon nanotubes-ionic liquid (Gr-MWCNTs-IL) which was used as a platform to electrochemical synthesis of molecularly imprinted polymers (MIPs) by using PT and CT as templates, maleic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross linker with the aim of preconcentration and simultaneous determination of the PT and CT. Experimental variables affecting fabrication of the structure of the sensor and hydrodynamic differential pulse voltammetric (HDPV) response of the sensor were optimized by a small central composite design and desirability function. After optimization, the HDPV responses of the sensor were calibrated by multivariate calibration methods in the ranges of 0.5–13 fM and 1.5–18 fM for PT and CT, respectively, with the help of PLS-1, RBF-PLS, rPLS, LS-SVM, and RBF-ANN with the aim of selecting the best algorithm to assist the sensor. Our results confirmed the best performance was observed from RBF-ANN which was used for the analysis of apple and pear fruit samples. Limit of detections of the sensor assisted by RBF-ANN for determination of PT and CT were 0.08 and 0.61 fM, respectively. Several commercial brands were analyzed by the use of sensor assisted by RBF-ANN and HPLC-UV, and the results confirmed performance of the sensor was admirable and comparable with the reference method with lower cost, faster response, and easier procedure which made it to be a reliable alternative method for simultaneous determination of PT and CT in real matrices.</p></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"252 \",\"pages\":\"Article 105188\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016974392400128X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016974392400128X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A novel, intelligent and computer-assisted electrochemical sensor for extraction and simultaneous determination of patulin and citrinin in apple and pear fruit samples
In this work, a novel electrochemical sensor was fabricated for simultaneous determination of patulin (PT) and citrinin (CT) in apple and pear fruit samples. A glassy carbon electrode (GCE) was modified with graphene-multiwalled carbon nanotubes-ionic liquid (Gr-MWCNTs-IL) which was used as a platform to electrochemical synthesis of molecularly imprinted polymers (MIPs) by using PT and CT as templates, maleic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross linker with the aim of preconcentration and simultaneous determination of the PT and CT. Experimental variables affecting fabrication of the structure of the sensor and hydrodynamic differential pulse voltammetric (HDPV) response of the sensor were optimized by a small central composite design and desirability function. After optimization, the HDPV responses of the sensor were calibrated by multivariate calibration methods in the ranges of 0.5–13 fM and 1.5–18 fM for PT and CT, respectively, with the help of PLS-1, RBF-PLS, rPLS, LS-SVM, and RBF-ANN with the aim of selecting the best algorithm to assist the sensor. Our results confirmed the best performance was observed from RBF-ANN which was used for the analysis of apple and pear fruit samples. Limit of detections of the sensor assisted by RBF-ANN for determination of PT and CT were 0.08 and 0.61 fM, respectively. Several commercial brands were analyzed by the use of sensor assisted by RBF-ANN and HPLC-UV, and the results confirmed performance of the sensor was admirable and comparable with the reference method with lower cost, faster response, and easier procedure which made it to be a reliable alternative method for simultaneous determination of PT and CT in real matrices.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.