Mehmet Bugdayci, Serkan Baslayici, Ozan Coban, Faruk Kaya
{"title":"ZrC-TiC 纳米复合材料的自蔓延高温合成 (SHS):镁和铝还原剂用量的比较及工艺优化","authors":"Mehmet Bugdayci, Serkan Baslayici, Ozan Coban, Faruk Kaya","doi":"10.1007/s41779-024-01062-2","DOIUrl":null,"url":null,"abstract":"<p>This study investigated the production of ZrC-TiC composite nanopowders by SHS process in TiO<sub>2</sub>-ZrO<sub>2</sub>-C-Mg/Al systems. Mg and Al charge stoichiometries and composite charge stoichiometries were optimized for SHS processes. The most precise procedural stages were identified for refining the SHS product; acid concentrations were optimized for Mg usage and an innovative chemical method was developed to eliminate and/or decrease the amount of Al<sub>2</sub>O<sub>3</sub> by-product, enabling the utilization of Al. Thermochemical simulations were conducted for thermodynamic evaluations (adiabatic temperature and specific heat) and characterizations were performed by XRD and SEM-EDS analysis. The findings indicated that utilizing both reductants allowed for the synthesis of ZrC-TiC-(Al<sub>2</sub>O<sub>3</sub>) particles that have considerable surface area and commercial purity. The outcomes demonstrated that Magnesium is a more effective reductant, yet Aluminium, also serves as a viable reductant, even though leading to an increase in process steps, but enabling in-situ formation of sinterability and toughness enhancing Al<sub>2</sub>O<sub>3</sub>. A novel chemical route including pre-acid leaching, NaOH fusion, water leaching, HCl leaching was identified for the synthesis of ZrC-TiC-Al<sub>2</sub>O<sub>3</sub> composite powder where the amount of Al<sub>2</sub>O<sub>3</sub> could be organized (according to the desired mechanical properties) by optimization.</p>","PeriodicalId":673,"journal":{"name":"Journal of the Australian Ceramic Society","volume":"41 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-propagating high temperature synthesis (SHS) of ZrC-TiC nanocomposites: Comparison of Mg and Al reductant usage and process optimization\",\"authors\":\"Mehmet Bugdayci, Serkan Baslayici, Ozan Coban, Faruk Kaya\",\"doi\":\"10.1007/s41779-024-01062-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigated the production of ZrC-TiC composite nanopowders by SHS process in TiO<sub>2</sub>-ZrO<sub>2</sub>-C-Mg/Al systems. Mg and Al charge stoichiometries and composite charge stoichiometries were optimized for SHS processes. The most precise procedural stages were identified for refining the SHS product; acid concentrations were optimized for Mg usage and an innovative chemical method was developed to eliminate and/or decrease the amount of Al<sub>2</sub>O<sub>3</sub> by-product, enabling the utilization of Al. Thermochemical simulations were conducted for thermodynamic evaluations (adiabatic temperature and specific heat) and characterizations were performed by XRD and SEM-EDS analysis. The findings indicated that utilizing both reductants allowed for the synthesis of ZrC-TiC-(Al<sub>2</sub>O<sub>3</sub>) particles that have considerable surface area and commercial purity. The outcomes demonstrated that Magnesium is a more effective reductant, yet Aluminium, also serves as a viable reductant, even though leading to an increase in process steps, but enabling in-situ formation of sinterability and toughness enhancing Al<sub>2</sub>O<sub>3</sub>. A novel chemical route including pre-acid leaching, NaOH fusion, water leaching, HCl leaching was identified for the synthesis of ZrC-TiC-Al<sub>2</sub>O<sub>3</sub> composite powder where the amount of Al<sub>2</sub>O<sub>3</sub> could be organized (according to the desired mechanical properties) by optimization.</p>\",\"PeriodicalId\":673,\"journal\":{\"name\":\"Journal of the Australian Ceramic Society\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s41779-024-01062-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s41779-024-01062-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Self-propagating high temperature synthesis (SHS) of ZrC-TiC nanocomposites: Comparison of Mg and Al reductant usage and process optimization
This study investigated the production of ZrC-TiC composite nanopowders by SHS process in TiO2-ZrO2-C-Mg/Al systems. Mg and Al charge stoichiometries and composite charge stoichiometries were optimized for SHS processes. The most precise procedural stages were identified for refining the SHS product; acid concentrations were optimized for Mg usage and an innovative chemical method was developed to eliminate and/or decrease the amount of Al2O3 by-product, enabling the utilization of Al. Thermochemical simulations were conducted for thermodynamic evaluations (adiabatic temperature and specific heat) and characterizations were performed by XRD and SEM-EDS analysis. The findings indicated that utilizing both reductants allowed for the synthesis of ZrC-TiC-(Al2O3) particles that have considerable surface area and commercial purity. The outcomes demonstrated that Magnesium is a more effective reductant, yet Aluminium, also serves as a viable reductant, even though leading to an increase in process steps, but enabling in-situ formation of sinterability and toughness enhancing Al2O3. A novel chemical route including pre-acid leaching, NaOH fusion, water leaching, HCl leaching was identified for the synthesis of ZrC-TiC-Al2O3 composite powder where the amount of Al2O3 could be organized (according to the desired mechanical properties) by optimization.
期刊介绍:
Publishes high quality research and technical papers in all areas of ceramic and related materials
Spans the broad and growing fields of ceramic technology, material science and bioceramics
Chronicles new advances in ceramic materials, manufacturing processes and applications
Journal of the Australian Ceramic Society since 1965
Professional language editing service is available through our affiliates Nature Research Editing Service and American Journal Experts at the author''s cost and does not guarantee that the manuscript will be reviewed or accepted