计算因果预测最小均方误差的复杂性表征

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Information Theory Pub Date : 2024-07-22 DOI:10.1109/TIT.2024.3431695
Holger Boche;Volker Pohl;H. Vincent Poor
{"title":"计算因果预测最小均方误差的复杂性表征","authors":"Holger Boche;Volker Pohl;H. Vincent Poor","doi":"10.1109/TIT.2024.3431695","DOIUrl":null,"url":null,"abstract":"This paper investigates the complexity of computing the minimum mean square prediction error for wide-sense stationary stochastic processes. It is shown that if the spectral density of the stationary process is a strictly positive, computable continuous function then the minimum mean square error (MMSE) is always a computable number. Nevertheless, we also show that the computation of the MMSE is a \n<inline-formula> <tex-math>$\\# P_{1}$ </tex-math></inline-formula>\n complete problem on the set of strictly positive, polynomial-time computable, continuous spectral densities. This means that if, as widely assumed, \n<inline-formula> <tex-math>$FP_{1} \\neq \\# P_{1}$ </tex-math></inline-formula>\n, then there exist strictly positive, polynomial-time computable continuous spectral densities for which the computation of the MMSE is not polynomial-time computable. These results show in particular that under the widely accepted assumptions of complexity theory, the computation of the MMSE is generally much harder than an \n<inline-formula> <tex-math>$NP_{1}$ </tex-math></inline-formula>\n complete problem.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 9","pages":"6627-6638"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10605985","citationCount":"0","resultStr":"{\"title\":\"Characterization of the Complexity of Computing the Minimum Mean Square Error of Causal Prediction\",\"authors\":\"Holger Boche;Volker Pohl;H. Vincent Poor\",\"doi\":\"10.1109/TIT.2024.3431695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the complexity of computing the minimum mean square prediction error for wide-sense stationary stochastic processes. It is shown that if the spectral density of the stationary process is a strictly positive, computable continuous function then the minimum mean square error (MMSE) is always a computable number. Nevertheless, we also show that the computation of the MMSE is a \\n<inline-formula> <tex-math>$\\\\# P_{1}$ </tex-math></inline-formula>\\n complete problem on the set of strictly positive, polynomial-time computable, continuous spectral densities. This means that if, as widely assumed, \\n<inline-formula> <tex-math>$FP_{1} \\\\neq \\\\# P_{1}$ </tex-math></inline-formula>\\n, then there exist strictly positive, polynomial-time computable continuous spectral densities for which the computation of the MMSE is not polynomial-time computable. These results show in particular that under the widely accepted assumptions of complexity theory, the computation of the MMSE is generally much harder than an \\n<inline-formula> <tex-math>$NP_{1}$ </tex-math></inline-formula>\\n complete problem.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"70 9\",\"pages\":\"6627-6638\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10605985\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10605985/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10605985/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了计算广义静态随机过程最小均方预测误差的复杂性。结果表明,如果静态过程的谱密度是一个严格为正、可计算的连续函数,那么最小均方误差(MMSE)总是一个可计算的数。然而,我们还证明,在严格正、多项式时间可计算、连续的谱密度集合上,最小均方误差的计算是一个 $\# P_{1}$ 完全问题。这意味着,如果像广泛假设的那样,$FP_{1}\neq \# P_{1}$ ,那么就存在严格正的、多项式时间可计算的连续谱密度,对于这些密度,MMSE 的计算不是多项式时间可计算的。这些结果特别表明,在广泛接受的复杂性理论假设下,MMSE 的计算通常比 $NP_{1}$ 完全问题难得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of the Complexity of Computing the Minimum Mean Square Error of Causal Prediction
This paper investigates the complexity of computing the minimum mean square prediction error for wide-sense stationary stochastic processes. It is shown that if the spectral density of the stationary process is a strictly positive, computable continuous function then the minimum mean square error (MMSE) is always a computable number. Nevertheless, we also show that the computation of the MMSE is a $\# P_{1}$ complete problem on the set of strictly positive, polynomial-time computable, continuous spectral densities. This means that if, as widely assumed, $FP_{1} \neq \# P_{1}$ , then there exist strictly positive, polynomial-time computable continuous spectral densities for which the computation of the MMSE is not polynomial-time computable. These results show in particular that under the widely accepted assumptions of complexity theory, the computation of the MMSE is generally much harder than an $NP_{1}$ complete problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
期刊最新文献
Table of Contents IEEE Transactions on Information Theory Publication Information IEEE Transactions on Information Theory Information for Authors Large and Small Deviations for Statistical Sequence Matching Derivatives of Entropy and the MMSE Conjecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1