用于斯特菲尔流形上复合优化的自适应正则近端牛顿型方法

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED Computational Optimization and Applications Pub Date : 2024-07-26 DOI:10.1007/s10589-024-00595-3
Qinsi Wang, Wei Hong Yang
{"title":"用于斯特菲尔流形上复合优化的自适应正则近端牛顿型方法","authors":"Qinsi Wang, Wei Hong Yang","doi":"10.1007/s10589-024-00595-3","DOIUrl":null,"url":null,"abstract":"<p>Recently, the proximal Newton-type method and its variants have been generalized to solve composite optimization problems over the Stiefel manifold whose objective function is the summation of a smooth function and a nonsmooth function. In this paper, we propose an adaptive quadratically regularized proximal quasi-Newton method, named ARPQN, to solve this class of problems. Under some mild assumptions, the global convergence, the local linear convergence rate and the iteration complexity of ARPQN are established. Numerical experiments and comparisons with other state-of-the-art methods indicate that ARPQN is very promising. We also propose an adaptive quadratically regularized proximal Newton method, named ARPN. It is shown the ARPN method has a local superlinear convergence rate under certain reasonable assumptions, which demonstrates attractive convergence properties of regularized proximal Newton methods.\n</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"154 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adaptive regularized proximal Newton-type methods for composite optimization over the Stiefel manifold\",\"authors\":\"Qinsi Wang, Wei Hong Yang\",\"doi\":\"10.1007/s10589-024-00595-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, the proximal Newton-type method and its variants have been generalized to solve composite optimization problems over the Stiefel manifold whose objective function is the summation of a smooth function and a nonsmooth function. In this paper, we propose an adaptive quadratically regularized proximal quasi-Newton method, named ARPQN, to solve this class of problems. Under some mild assumptions, the global convergence, the local linear convergence rate and the iteration complexity of ARPQN are established. Numerical experiments and comparisons with other state-of-the-art methods indicate that ARPQN is very promising. We also propose an adaptive quadratically regularized proximal Newton method, named ARPN. It is shown the ARPN method has a local superlinear convergence rate under certain reasonable assumptions, which demonstrates attractive convergence properties of regularized proximal Newton methods.\\n</p>\",\"PeriodicalId\":55227,\"journal\":{\"name\":\"Computational Optimization and Applications\",\"volume\":\"154 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Optimization and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-024-00595-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00595-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

最近,近似牛顿法及其变体被推广用于求解目标函数为光滑函数与非光滑函数之和的 Stiefel 流形上的复合优化问题。本文提出了一种名为 ARPQN 的自适应二次正则近似准牛顿法来解决这类问题。在一些温和的假设条件下,建立了 ARPQN 的全局收敛性、局部线性收敛率和迭代复杂度。数值实验以及与其他最先进方法的比较表明,ARPQN 非常有前途。我们还提出了一种自适应二次正则化近牛顿方法,命名为 ARPN。结果表明,在某些合理的假设条件下,ARPN 方法具有局部超线性收敛率,这证明了正则化近牛顿方法具有诱人的收敛特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An adaptive regularized proximal Newton-type methods for composite optimization over the Stiefel manifold

Recently, the proximal Newton-type method and its variants have been generalized to solve composite optimization problems over the Stiefel manifold whose objective function is the summation of a smooth function and a nonsmooth function. In this paper, we propose an adaptive quadratically regularized proximal quasi-Newton method, named ARPQN, to solve this class of problems. Under some mild assumptions, the global convergence, the local linear convergence rate and the iteration complexity of ARPQN are established. Numerical experiments and comparisons with other state-of-the-art methods indicate that ARPQN is very promising. We also propose an adaptive quadratically regularized proximal Newton method, named ARPN. It is shown the ARPN method has a local superlinear convergence rate under certain reasonable assumptions, which demonstrates attractive convergence properties of regularized proximal Newton methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
9.10%
发文量
91
审稿时长
10 months
期刊介绍: Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome. Topics of interest include, but are not limited to the following: Large Scale Optimization, Unconstrained Optimization, Linear Programming, Quadratic Programming Complementarity Problems, and Variational Inequalities, Constrained Optimization, Nondifferentiable Optimization, Integer Programming, Combinatorial Optimization, Stochastic Optimization, Multiobjective Optimization, Network Optimization, Complexity Theory, Approximations and Error Analysis, Parametric Programming and Sensitivity Analysis, Parallel Computing, Distributed Computing, and Vector Processing, Software, Benchmarks, Numerical Experimentation and Comparisons, Modelling Languages and Systems for Optimization, Automatic Differentiation, Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research, Transportation, Economics, Communications, Manufacturing, and Management Science.
期刊最新文献
A family of conjugate gradient methods with guaranteed positiveness and descent for vector optimization Convergence of a quasi-Newton method for solving systems of nonlinear underdetermined equations Scaled-PAKKT sequential optimality condition for multiobjective problems and its application to an Augmented Lagrangian method A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization Robust approximation of chance constrained optimization with polynomial perturbation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1