硅胶支撑的钯纳米催化剂:高效的 Mizoroki-Heck 反应和可持续的 Ozagrel 合成

IF 5.4 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY GIANT Pub Date : 2024-08-01 DOI:10.1016/j.giant.2024.100326
Shaheen M. Sarkar , Md Lutfor Rahman
{"title":"硅胶支撑的钯纳米催化剂:高效的 Mizoroki-Heck 反应和可持续的 Ozagrel 合成","authors":"Shaheen M. Sarkar ,&nbsp;Md Lutfor Rahman","doi":"10.1016/j.giant.2024.100326","DOIUrl":null,"url":null,"abstract":"<div><p>We developed a cost-effective silica gel-supported palladium nanocatalyst in a three-step reactions process. Initially, silica gel (60–120 mesh) underwent amino group functionalization using 3-aminopropyltriethoxysilane, leading to the formation of a Schiff base through a reaction with the 1,10-phenanthroline-2,9-dicarboxaldehyde ligand. Subsequently, palladium nanocatalyst was introduced to the silica matrix ligand in the presence of palladium salt and hydrazine hydrate, resulting in the formation of the silica gel-supported Schiff-base palladium nanocatalyst (<strong>Si@SBPdNPs 3</strong>). Successful functionalization of the silica matrix was confirmed using various spectroscopic techniques. FT-IR spectra demonstrated the incorporation of organic moieties onto the silica surface, while SEM images revealed the modified spherical shape of the silica gel. TEM and XRD analyses confirmed the presence of palladium on the silica matrix. ICP and EDX measurements validated the anchoring of 0.55 mmol/g of palladium to the catalyst. Additionally, XPS analysis showed the complexation of Pd<sup>(0)</sup> with the organic ligand on the silica matrix, confirming the successful integration of palladium into the system. This nanocatalyst demonstrated outstanding performance in Mizoroki-Heck reactions, yielding high product outputs in the cross-coupling of various aryl halides and olefins under mild conditions. Additionally, the nanocatalyst was effectively utilized in synthesizing Ozagrel, a thromboxane A2 synthesis inhibitor used for treating noncardioembolic stroke patients. Remarkably, the catalyst demonstrated excellent reusability, maintaining high productivity across five consecutive cycles, underscoring its economic and sustainable potential for industrial applications.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000900/pdfft?md5=f097ab25b6e055c7526d7c396e32c8dd&pid=1-s2.0-S2666542524000900-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Silica gel-supported Pd nanocatalyst: Efficient Mizoroki-Heck reactions and sustainable Ozagrel synthesis\",\"authors\":\"Shaheen M. Sarkar ,&nbsp;Md Lutfor Rahman\",\"doi\":\"10.1016/j.giant.2024.100326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We developed a cost-effective silica gel-supported palladium nanocatalyst in a three-step reactions process. Initially, silica gel (60–120 mesh) underwent amino group functionalization using 3-aminopropyltriethoxysilane, leading to the formation of a Schiff base through a reaction with the 1,10-phenanthroline-2,9-dicarboxaldehyde ligand. Subsequently, palladium nanocatalyst was introduced to the silica matrix ligand in the presence of palladium salt and hydrazine hydrate, resulting in the formation of the silica gel-supported Schiff-base palladium nanocatalyst (<strong>Si@SBPdNPs 3</strong>). Successful functionalization of the silica matrix was confirmed using various spectroscopic techniques. FT-IR spectra demonstrated the incorporation of organic moieties onto the silica surface, while SEM images revealed the modified spherical shape of the silica gel. TEM and XRD analyses confirmed the presence of palladium on the silica matrix. ICP and EDX measurements validated the anchoring of 0.55 mmol/g of palladium to the catalyst. Additionally, XPS analysis showed the complexation of Pd<sup>(0)</sup> with the organic ligand on the silica matrix, confirming the successful integration of palladium into the system. This nanocatalyst demonstrated outstanding performance in Mizoroki-Heck reactions, yielding high product outputs in the cross-coupling of various aryl halides and olefins under mild conditions. Additionally, the nanocatalyst was effectively utilized in synthesizing Ozagrel, a thromboxane A2 synthesis inhibitor used for treating noncardioembolic stroke patients. Remarkably, the catalyst demonstrated excellent reusability, maintaining high productivity across five consecutive cycles, underscoring its economic and sustainable potential for industrial applications.</p></div>\",\"PeriodicalId\":34151,\"journal\":{\"name\":\"GIANT\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000900/pdfft?md5=f097ab25b6e055c7526d7c396e32c8dd&pid=1-s2.0-S2666542524000900-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIANT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000900\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524000900","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们通过三步反应过程开发出了一种具有成本效益的硅胶支撑钯纳米催化剂。首先,硅胶(60-120 目)使用 3-aminopropyltriethoxysilane 进行氨基官能化,通过与 1,10-菲罗啉-2,9-二甲醛配体反应形成希夫碱。随后,在钯盐和水合肼的存在下,将纳米钯催化剂引入硅胶基质配体,形成了硅胶支撑的希夫碱纳米钯催化剂()。使用各种光谱技术确认了硅胶基质的成功功能化。傅立叶变换红外光谱显示了有机分子在二氧化硅表面的结合,而扫描电镜图像则显示了硅胶的改性球形。TEM 和 XRD 分析证实了二氧化硅基体上钯的存在。ICP 和 EDX 测量证实催化剂上锚定了 0.55 mmol/g 的钯。此外,XPS 分析表明钯与二氧化硅基体上的有机配体发生了络合反应,证实钯成功地融入了该体系。这种纳米催化剂在 Mizoroki-Heck 反应中表现出卓越的性能,在温和条件下,各种芳基卤化物和烯烃的交叉偶联反应中产生了大量产物。此外,该纳米催化剂还被有效地用于合成 Ozagrel(一种血栓素 A2 合成抑制剂,用于治疗非心肌栓塞性中风患者)。值得注意的是,该催化剂具有极佳的可重复使用性,可在连续五个循环中保持高生产率,这凸显了其在工业应用中的经济性和可持续发展潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Silica gel-supported Pd nanocatalyst: Efficient Mizoroki-Heck reactions and sustainable Ozagrel synthesis

We developed a cost-effective silica gel-supported palladium nanocatalyst in a three-step reactions process. Initially, silica gel (60–120 mesh) underwent amino group functionalization using 3-aminopropyltriethoxysilane, leading to the formation of a Schiff base through a reaction with the 1,10-phenanthroline-2,9-dicarboxaldehyde ligand. Subsequently, palladium nanocatalyst was introduced to the silica matrix ligand in the presence of palladium salt and hydrazine hydrate, resulting in the formation of the silica gel-supported Schiff-base palladium nanocatalyst (Si@SBPdNPs 3). Successful functionalization of the silica matrix was confirmed using various spectroscopic techniques. FT-IR spectra demonstrated the incorporation of organic moieties onto the silica surface, while SEM images revealed the modified spherical shape of the silica gel. TEM and XRD analyses confirmed the presence of palladium on the silica matrix. ICP and EDX measurements validated the anchoring of 0.55 mmol/g of palladium to the catalyst. Additionally, XPS analysis showed the complexation of Pd(0) with the organic ligand on the silica matrix, confirming the successful integration of palladium into the system. This nanocatalyst demonstrated outstanding performance in Mizoroki-Heck reactions, yielding high product outputs in the cross-coupling of various aryl halides and olefins under mild conditions. Additionally, the nanocatalyst was effectively utilized in synthesizing Ozagrel, a thromboxane A2 synthesis inhibitor used for treating noncardioembolic stroke patients. Remarkably, the catalyst demonstrated excellent reusability, maintaining high productivity across five consecutive cycles, underscoring its economic and sustainable potential for industrial applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GIANT
GIANT Multiple-
CiteScore
8.50
自引率
8.60%
发文量
46
审稿时长
42 days
期刊介绍: Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.
期刊最新文献
Small dop of comonomer, giant shift of dynamics: α-methyl-regulated viscoelasticity of poly(methacrylamide) hydrogels The effect of dynamic cross-links and mesogenic groups on the swelling and collapse of polymer gels Binary blends of poly(lactic acid) and poly(methyl methacrylate) for high energy density and charge/discharge efficiency capacitors Systematic anode engineering enabling universal efficiency improvements in organic solar cells Thermal response color-tunable electroluminescent device for real-time visual temperature monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1