开发用于估算聚合物压痕疲劳的经验模型,并用有限元模拟模型进行验证

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Research Pub Date : 2024-07-25 DOI:10.1557/s43578-024-01399-1
Soumya Ranjan Guru, Mihir Sarangi
{"title":"开发用于估算聚合物压痕疲劳的经验模型,并用有限元模拟模型进行验证","authors":"Soumya Ranjan Guru, Mihir Sarangi","doi":"10.1557/s43578-024-01399-1","DOIUrl":null,"url":null,"abstract":"<p>Multi-cycle micro-indentation tests were conducted on three polymers: Poly-ether-ether-ketone (PEEK), Poly (methyl methacrylate) (PMMA), and Poly (tetra-fluoroethylene) (PTFE). The load–displacement curve obtained from the indentation technique was used to evaluate the mechanical properties of these polymers. This study employed multi-cyclic indentation to establish a polymer fatigue model utilizing the indentation load–displacement curve. Currently, researchers are investigating fatigue life studies using stress- and energy-based approaches. Two empirical models for each approach were developed using the least-square curve-fitting method in this study. A simulation model based on finite element analysis has been utilized to verify the accuracy of these fatigue models for Vickers indentation. During the validation process, both models had a maximum error value of 2% compared to the experimental data, indicating a strong agreement with the simulation results. The generated models can evaluate polymer fatigue using non-destructive methodology.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of empirical models for estimation polymer indentation fatigue and validation with finite element simulation models\",\"authors\":\"Soumya Ranjan Guru, Mihir Sarangi\",\"doi\":\"10.1557/s43578-024-01399-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multi-cycle micro-indentation tests were conducted on three polymers: Poly-ether-ether-ketone (PEEK), Poly (methyl methacrylate) (PMMA), and Poly (tetra-fluoroethylene) (PTFE). The load–displacement curve obtained from the indentation technique was used to evaluate the mechanical properties of these polymers. This study employed multi-cyclic indentation to establish a polymer fatigue model utilizing the indentation load–displacement curve. Currently, researchers are investigating fatigue life studies using stress- and energy-based approaches. Two empirical models for each approach were developed using the least-square curve-fitting method in this study. A simulation model based on finite element analysis has been utilized to verify the accuracy of these fatigue models for Vickers indentation. During the validation process, both models had a maximum error value of 2% compared to the experimental data, indicating a strong agreement with the simulation results. The generated models can evaluate polymer fatigue using non-destructive methodology.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":16306,\"journal\":{\"name\":\"Journal of Materials Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43578-024-01399-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01399-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对三种聚合物进行了多循环微压痕测试:聚醚醚酮(PEEK)、聚甲基丙烯酸甲酯(PMMA)和聚四氟乙烯(PTFE)。通过压痕技术获得的载荷-位移曲线可用于评估这些聚合物的机械性能。这项研究采用多循环压痕法,利用压痕载荷-位移曲线建立了聚合物疲劳模型。目前,研究人员正在使用基于应力和能量的方法进行疲劳寿命研究。本研究采用最小平方曲线拟合法为每种方法建立了两个经验模型。基于有限元分析的模拟模型被用来验证这些维氏压痕疲劳模型的准确性。在验证过程中,与实验数据相比,两个模型的最大误差值均为 2%,表明与模拟结果非常吻合。生成的模型可以使用非破坏性方法评估聚合物疲劳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of empirical models for estimation polymer indentation fatigue and validation with finite element simulation models

Multi-cycle micro-indentation tests were conducted on three polymers: Poly-ether-ether-ketone (PEEK), Poly (methyl methacrylate) (PMMA), and Poly (tetra-fluoroethylene) (PTFE). The load–displacement curve obtained from the indentation technique was used to evaluate the mechanical properties of these polymers. This study employed multi-cyclic indentation to establish a polymer fatigue model utilizing the indentation load–displacement curve. Currently, researchers are investigating fatigue life studies using stress- and energy-based approaches. Two empirical models for each approach were developed using the least-square curve-fitting method in this study. A simulation model based on finite element analysis has been utilized to verify the accuracy of these fatigue models for Vickers indentation. During the validation process, both models had a maximum error value of 2% compared to the experimental data, indicating a strong agreement with the simulation results. The generated models can evaluate polymer fatigue using non-destructive methodology.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Research
Journal of Materials Research 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.70%
发文量
362
审稿时长
2.8 months
期刊介绍: Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome. • Novel materials discovery • Electronic, photonic and magnetic materials • Energy Conversion and storage materials • New thermal and structural materials • Soft materials • Biomaterials and related topics • Nanoscale science and technology • Advances in materials characterization methods and techniques • Computational materials science, modeling and theory
期刊最新文献
Effect of Co concentration on cation distribution and magnetic and magneto-optical properties of CoxZn1-xFe2O4 nanoparticles synthesized with citrate precursor method Fabrication and characterization of nanocomposite hydrogel based N-succinyl chitosan/oxidized tragacanth gum/silver nanoparticles for biomedical materials Development of a processing route for the fabrication of thin hierarchically porous copper self-standing structure using direct ink writing and sintering for electrochemical energy storage application Rapidly synthesis of AuM (M = Pt, Pd) hexagonals/graphene quantum dots nanostructures and their application for non-enzyme hydrogen peroxide detection Nanocomposites Fe2O3/PNR loaded partially reduced rGO/GCE as an electrochemical probe for selective determination of uric acid and dopamine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1