通过铜催化的芳基(甲磺酰基)碘鎓盐选择性芳基化合成杂环锍三氟化物

IF 1.7 4区 化学 Q3 CHEMISTRY, ORGANIC Current organic synthesis Pub Date : 2024-07-23 DOI:10.2174/0115701794298369240607042545
Yusuke Yoto, Ryo Hatagochi, Yuto Irie, Naoko Takenaga, Ravi Kumar, Toshifumi Dohi
{"title":"通过铜催化的芳基(甲磺酰基)碘鎓盐选择性芳基化合成杂环锍三氟化物","authors":"Yusuke Yoto, Ryo Hatagochi, Yuto Irie, Naoko Takenaga, Ravi Kumar, Toshifumi Dohi","doi":"10.2174/0115701794298369240607042545","DOIUrl":null,"url":null,"abstract":"Background: An efficient method for synthesizing cyclic arylsulfonium salts has been developed by selective aryl transfer to the sulfur atom from aryl(mesityl)iodonium triflates, a recyclable series of diaryliodonium salts. Methods: The utilization of sulfonium salts as valuable intermediates is well-established, as they exhibit high reactivity under conditions of heating or UV irradiation. However, their synthesis typically involves the reaction of diarysulfoxide with acid anhydride, which requires the oxidation of sulfur(II) to sulfoxide(IV) and thus limits the scope of synthesis. Hence, in this study, we employed recyclable mesityliodonium(III) salts and copper catalysis. Results: The method was used to synthesize cyclic arylsulfonium salts without the need for preoxidation of the sulfur atom, resulting in a facile and high-yield synthesis. Conclusion: The desired cyclic arylsulfonium salts were synthesized through selective transfer of the aryl group from mesityliodonium salts, demonstrating the effectiveness of the new approach.","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Heterocyclic Sulfonium Triflates by Cu-Catalyzed Selective Sarylation with Aryl(mesityl)iodonium Salts\",\"authors\":\"Yusuke Yoto, Ryo Hatagochi, Yuto Irie, Naoko Takenaga, Ravi Kumar, Toshifumi Dohi\",\"doi\":\"10.2174/0115701794298369240607042545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: An efficient method for synthesizing cyclic arylsulfonium salts has been developed by selective aryl transfer to the sulfur atom from aryl(mesityl)iodonium triflates, a recyclable series of diaryliodonium salts. Methods: The utilization of sulfonium salts as valuable intermediates is well-established, as they exhibit high reactivity under conditions of heating or UV irradiation. However, their synthesis typically involves the reaction of diarysulfoxide with acid anhydride, which requires the oxidation of sulfur(II) to sulfoxide(IV) and thus limits the scope of synthesis. Hence, in this study, we employed recyclable mesityliodonium(III) salts and copper catalysis. Results: The method was used to synthesize cyclic arylsulfonium salts without the need for preoxidation of the sulfur atom, resulting in a facile and high-yield synthesis. Conclusion: The desired cyclic arylsulfonium salts were synthesized through selective transfer of the aryl group from mesityliodonium salts, demonstrating the effectiveness of the new approach.\",\"PeriodicalId\":11101,\"journal\":{\"name\":\"Current organic synthesis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current organic synthesis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0115701794298369240607042545\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current organic synthesis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115701794298369240607042545","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

背景:通过选择性地将芳基转移到芳基(甲苯甲基)碘鎓三氟酸盐(一种可回收的二元碘鎓盐系列)的硫原子上,开发出了一种合成环状芳基锍盐的高效方法。方法:锍盐在加热或紫外线照射条件下具有很高的反应活性,因此被广泛用作有价值的中间体。然而,它们的合成通常涉及二元亚砜与酸酐的反应,这需要将硫(II)氧化成亚砜(IV),因此限制了合成范围。因此,在本研究中,我们采用了可回收的介质碘(III)盐和铜催化剂。结果:该方法用于合成环芳基锍盐,无需对硫原子进行预氧化,合成过程简便且产量高。结论通过选择性转移中碘鎓盐中的芳基,合成了所需的环芳基锍盐,证明了新方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of Heterocyclic Sulfonium Triflates by Cu-Catalyzed Selective Sarylation with Aryl(mesityl)iodonium Salts
Background: An efficient method for synthesizing cyclic arylsulfonium salts has been developed by selective aryl transfer to the sulfur atom from aryl(mesityl)iodonium triflates, a recyclable series of diaryliodonium salts. Methods: The utilization of sulfonium salts as valuable intermediates is well-established, as they exhibit high reactivity under conditions of heating or UV irradiation. However, their synthesis typically involves the reaction of diarysulfoxide with acid anhydride, which requires the oxidation of sulfur(II) to sulfoxide(IV) and thus limits the scope of synthesis. Hence, in this study, we employed recyclable mesityliodonium(III) salts and copper catalysis. Results: The method was used to synthesize cyclic arylsulfonium salts without the need for preoxidation of the sulfur atom, resulting in a facile and high-yield synthesis. Conclusion: The desired cyclic arylsulfonium salts were synthesized through selective transfer of the aryl group from mesityliodonium salts, demonstrating the effectiveness of the new approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current organic synthesis
Current organic synthesis 化学-有机化学
CiteScore
3.40
自引率
5.60%
发文量
86
审稿时长
6-12 weeks
期刊介绍: Current Organic Synthesis publishes in-depth reviews, original research articles and letter/short communications on all areas of synthetic organic chemistry i.e. asymmetric synthesis, organometallic chemistry, novel synthetic approaches to complex organic molecules, carbohydrates, polymers, protein chemistry, DNA chemistry, supramolecular chemistry, molecular recognition and new synthetic methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by experts who are internationally known for their eminent research contributions. The journal is essential reading to all synthetic organic chemists. Current Organic Synthesis should prove to be of great interest to synthetic chemists in academia and industry who wish to keep abreast with recent developments in key fields of organic synthesis.
期刊最新文献
A Pharmacological Overview and Recent Patent of Triazine Scaffold in Drug Development: A Review Development of a Suitable Method for the Synthesis of New Thiadiazoles Using Hydrazonoyl Halides Synthesis of Heterocyclic Sulfonium Triflates by Cu-Catalyzed Selective Sarylation with Aryl(mesityl)iodonium Salts Co2(CO)8 as a CO-source for Pd-catalyzed Carbonylations: An Update Synthesis and Characterization of Novel Polythiadiazoles from Bis-hydrazonoyl Dichlorides and Bis-(methyl-2-arylidene hydrazone carbodithioates)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1