{"title":"利用三维石墨烯结构实现的高能量密度长循环锂硫电池","authors":"Yan Cheng, Bihan Liu, Xiang Li, Xin He, Zhiyi Sun, Wentao Zhang, Ziyao Gao, Leyuan Zhang, Xiangxiang Chen, Zhen Chen, Zhuo Chen, Lele Peng, Xiangfeng Duan","doi":"10.1002/cey2.599","DOIUrl":null,"url":null,"abstract":"Lithium–sulfur (Li–S) battery is attracting increasing interest for its potential in low-cost high-density energy storage. However, it has been a persistent challenge to simultaneously realize high energy density and long cycle life. Herein, we report a synergistic strategy to exploit a unique nitrogen-doped three-dimensional graphene aerogel as both the lithium anode host to ensure homogeneous lithium plating/stripping and mitigate lithium dendrite formation and the sulfur cathode host to facilitate efficient sulfur redox chemistry and combat undesirable polysulfide shuttling effect, realizing Li–S battery simultaneously with ultrahigh energy density and long cycle life. The as-demonstrated polysulfide-based device delivers a high areal capacity of 7.5 mAh/cm<sup>2</sup> (corresponds to 787 Wh/L) and an ultralow capacity fading of 0.025% per cycle over 1000 cycles at a high current density of 8.6 mA/cm<sup>2</sup>. Our findings suggest a novel strategy to scale up the superior electrochemical property of every microscopic unit to a macroscopic-level performance that enables simultaneously high areal energy density and long cycling stability that are critical for practical Li–S batteries.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"21 1","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-energy-density long-cycle lithium–sulfur battery enabled by 3D graphene architecture\",\"authors\":\"Yan Cheng, Bihan Liu, Xiang Li, Xin He, Zhiyi Sun, Wentao Zhang, Ziyao Gao, Leyuan Zhang, Xiangxiang Chen, Zhen Chen, Zhuo Chen, Lele Peng, Xiangfeng Duan\",\"doi\":\"10.1002/cey2.599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium–sulfur (Li–S) battery is attracting increasing interest for its potential in low-cost high-density energy storage. However, it has been a persistent challenge to simultaneously realize high energy density and long cycle life. Herein, we report a synergistic strategy to exploit a unique nitrogen-doped three-dimensional graphene aerogel as both the lithium anode host to ensure homogeneous lithium plating/stripping and mitigate lithium dendrite formation and the sulfur cathode host to facilitate efficient sulfur redox chemistry and combat undesirable polysulfide shuttling effect, realizing Li–S battery simultaneously with ultrahigh energy density and long cycle life. The as-demonstrated polysulfide-based device delivers a high areal capacity of 7.5 mAh/cm<sup>2</sup> (corresponds to 787 Wh/L) and an ultralow capacity fading of 0.025% per cycle over 1000 cycles at a high current density of 8.6 mA/cm<sup>2</sup>. Our findings suggest a novel strategy to scale up the superior electrochemical property of every microscopic unit to a macroscopic-level performance that enables simultaneously high areal energy density and long cycling stability that are critical for practical Li–S batteries.\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/cey2.599\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cey2.599","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A high-energy-density long-cycle lithium–sulfur battery enabled by 3D graphene architecture
Lithium–sulfur (Li–S) battery is attracting increasing interest for its potential in low-cost high-density energy storage. However, it has been a persistent challenge to simultaneously realize high energy density and long cycle life. Herein, we report a synergistic strategy to exploit a unique nitrogen-doped three-dimensional graphene aerogel as both the lithium anode host to ensure homogeneous lithium plating/stripping and mitigate lithium dendrite formation and the sulfur cathode host to facilitate efficient sulfur redox chemistry and combat undesirable polysulfide shuttling effect, realizing Li–S battery simultaneously with ultrahigh energy density and long cycle life. The as-demonstrated polysulfide-based device delivers a high areal capacity of 7.5 mAh/cm2 (corresponds to 787 Wh/L) and an ultralow capacity fading of 0.025% per cycle over 1000 cycles at a high current density of 8.6 mA/cm2. Our findings suggest a novel strategy to scale up the superior electrochemical property of every microscopic unit to a macroscopic-level performance that enables simultaneously high areal energy density and long cycling stability that are critical for practical Li–S batteries.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.