发现新型抗菌剂以对抗抗菌剂耐药性的硅学方法纪事回顾

IF 2.1 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Indian Journal of Microbiology Pub Date : 2024-07-22 DOI:10.1007/s12088-024-01355-x
Nagarjuna Prakash Dalbanjan, S. K. Praveen Kumar
{"title":"发现新型抗菌剂以对抗抗菌剂耐药性的硅学方法纪事回顾","authors":"Nagarjuna Prakash Dalbanjan, S. K. Praveen Kumar","doi":"10.1007/s12088-024-01355-x","DOIUrl":null,"url":null,"abstract":"<p>Antimicrobial resistance (AMR) poses a foremost threat to global health, necessitating innovative strategies for discovering antimicrobial agents. This review explores the role and recent advances of <i>in-silico</i> techniques in identifying novel antimicrobial agents and combating AMR giving few briefings of recent case studies of AMR. <i>In-silico</i> techniques, such as homology modeling, virtual screening, molecular docking, pharmacophore modeling, molecular dynamics simulation, density functional theory, integrated machine learning, and artificial intelligence, are systematically reviewed for their utility in discovering antimicrobial agents. These computational methods enable the rapid screening of large compound libraries, prediction of drug-target interactions, and optimization of drug candidates. The review discusses integrating <i>in-silico</i> approaches with traditional experimental methods and highlights their potential to accelerate the discovery of new antimicrobial agents. Furthermore, it emphasizes the significance of interdisciplinary collaboration and data-sharing initiatives in advancing antimicrobial research. Through a comprehensive discussion of the latest developments in <i>in-silico</i> techniques, this review provides valuable insights into the future of antimicrobial research and the fight against AMR.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":13316,"journal":{"name":"Indian Journal of Microbiology","volume":"40 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Chronicle Review of In-Silico Approaches for Discovering Novel Antimicrobial Agents to Combat Antimicrobial Resistance\",\"authors\":\"Nagarjuna Prakash Dalbanjan, S. K. Praveen Kumar\",\"doi\":\"10.1007/s12088-024-01355-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Antimicrobial resistance (AMR) poses a foremost threat to global health, necessitating innovative strategies for discovering antimicrobial agents. This review explores the role and recent advances of <i>in-silico</i> techniques in identifying novel antimicrobial agents and combating AMR giving few briefings of recent case studies of AMR. <i>In-silico</i> techniques, such as homology modeling, virtual screening, molecular docking, pharmacophore modeling, molecular dynamics simulation, density functional theory, integrated machine learning, and artificial intelligence, are systematically reviewed for their utility in discovering antimicrobial agents. These computational methods enable the rapid screening of large compound libraries, prediction of drug-target interactions, and optimization of drug candidates. The review discusses integrating <i>in-silico</i> approaches with traditional experimental methods and highlights their potential to accelerate the discovery of new antimicrobial agents. Furthermore, it emphasizes the significance of interdisciplinary collaboration and data-sharing initiatives in advancing antimicrobial research. Through a comprehensive discussion of the latest developments in <i>in-silico</i> techniques, this review provides valuable insights into the future of antimicrobial research and the fight against AMR.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":13316,\"journal\":{\"name\":\"Indian Journal of Microbiology\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12088-024-01355-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12088-024-01355-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

抗菌剂耐药性(AMR)对全球健康构成了最严重的威胁,因此有必要采取创新战略来发现抗菌剂。本综述探讨了硅学技术在确定新型抗菌剂和抗击 AMR 方面的作用和最新进展,并简要介绍了最近的 AMR 案例研究。本文系统地评述了同源建模、虚拟筛选、分子对接、药效学建模、分子动力学模拟、密度泛函理论、综合机器学习和人工智能等室内技术在发现抗菌剂方面的作用。这些计算方法能够快速筛选大型化合物库、预测药物与靶点的相互作用并优化候选药物。这篇综述讨论了将室内方法与传统实验方法相结合的问题,并强调了这些方法在加速发现新抗菌剂方面的潜力。此外,它还强调了跨学科合作和数据共享计划在推进抗菌研究方面的重要意义。这篇综述全面论述了硅学技术的最新发展,为未来的抗菌研究和抗击 AMR 提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Chronicle Review of In-Silico Approaches for Discovering Novel Antimicrobial Agents to Combat Antimicrobial Resistance

Antimicrobial resistance (AMR) poses a foremost threat to global health, necessitating innovative strategies for discovering antimicrobial agents. This review explores the role and recent advances of in-silico techniques in identifying novel antimicrobial agents and combating AMR giving few briefings of recent case studies of AMR. In-silico techniques, such as homology modeling, virtual screening, molecular docking, pharmacophore modeling, molecular dynamics simulation, density functional theory, integrated machine learning, and artificial intelligence, are systematically reviewed for their utility in discovering antimicrobial agents. These computational methods enable the rapid screening of large compound libraries, prediction of drug-target interactions, and optimization of drug candidates. The review discusses integrating in-silico approaches with traditional experimental methods and highlights their potential to accelerate the discovery of new antimicrobial agents. Furthermore, it emphasizes the significance of interdisciplinary collaboration and data-sharing initiatives in advancing antimicrobial research. Through a comprehensive discussion of the latest developments in in-silico techniques, this review provides valuable insights into the future of antimicrobial research and the fight against AMR.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indian Journal of Microbiology
Indian Journal of Microbiology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
6.00
自引率
10.00%
发文量
51
审稿时长
1 months
期刊介绍: Indian Journal of Microbiology is the official organ of the Association of Microbiologists of India (AMI). It publishes full-length papers, short communication reviews and mini reviews on all aspects of microbiological research, published quarterly (March, June, September and December). Areas of special interest include agricultural, food, environmental, industrial, medical, pharmaceutical, veterinary and molecular microbiology.
期刊最新文献
Bionanotechnology: A Paradigm for Advancing Environmental Sustainability Comparative Analysis of Faecal Bacteria in Captive Asian Elephants of Various Age Groups and Musth A Novel Electrochemical Sensing Platform for Detection of Nitrobenzene Using Gadolinium Oxide Nanorods Modified Gold Electrode Nanocomposite Foils of PS/Cu : Dual Functionality of Optical Enhancement and Antibacterial Activity on Aeromonas hydrophila Nanofabrication of Biochar from Cellulosic Waste for Bio-Sensing Application of Waste Water Treatment: Process, Challenges and Future Update
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1