异构战略代理之间的均值估计数据共享

Alex Clinton, Yiding Chen, Xiaojin Zhu, Kirthevasan Kandasamy
{"title":"异构战略代理之间的均值估计数据共享","authors":"Alex Clinton, Yiding Chen, Xiaojin Zhu, Kirthevasan Kandasamy","doi":"arxiv-2407.15881","DOIUrl":null,"url":null,"abstract":"We study a collaborative learning problem where $m$ agents estimate a vector\n$\\mu\\in\\mathbb{R}^d$ by collecting samples from normal distributions, with each\nagent $i$ incurring a cost $c_{i,k} \\in (0, \\infty]$ to sample from the\n$k^{\\text{th}}$ distribution $\\mathcal{N}(\\mu_k, \\sigma^2)$. Instead of working\non their own, agents can collect data that is cheap to them, and share it with\nothers in exchange for data that is expensive or even inaccessible to them,\nthereby simultaneously reducing data collection costs and estimation error.\nHowever, when agents have different collection costs, we need to first decide\nhow to fairly divide the work of data collection so as to benefit all agents.\nMoreover, in naive sharing protocols, strategic agents may under-collect and/or\nfabricate data, leading to socially undesirable outcomes. Our mechanism\naddresses these challenges by combining ideas from cooperative and\nnon-cooperative game theory. We use ideas from axiomatic bargaining to divide\nthe cost of data collection. Given such a solution, we develop a Nash\nincentive-compatible (NIC) mechanism to enforce truthful reporting. We achieve\na $\\mathcal{O}(\\sqrt{m})$ approximation to the minimum social penalty (sum of\nagent estimation errors and data collection costs) in the worst case, and a\n$\\mathcal{O}(1)$ approximation under favorable conditions. We complement this\nwith a hardness result, showing that $\\Omega(\\sqrt{m})$ is unavoidable in any\nNIC mechanism.","PeriodicalId":501316,"journal":{"name":"arXiv - CS - Computer Science and Game Theory","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Sharing for Mean Estimation Among Heterogeneous Strategic Agents\",\"authors\":\"Alex Clinton, Yiding Chen, Xiaojin Zhu, Kirthevasan Kandasamy\",\"doi\":\"arxiv-2407.15881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a collaborative learning problem where $m$ agents estimate a vector\\n$\\\\mu\\\\in\\\\mathbb{R}^d$ by collecting samples from normal distributions, with each\\nagent $i$ incurring a cost $c_{i,k} \\\\in (0, \\\\infty]$ to sample from the\\n$k^{\\\\text{th}}$ distribution $\\\\mathcal{N}(\\\\mu_k, \\\\sigma^2)$. Instead of working\\non their own, agents can collect data that is cheap to them, and share it with\\nothers in exchange for data that is expensive or even inaccessible to them,\\nthereby simultaneously reducing data collection costs and estimation error.\\nHowever, when agents have different collection costs, we need to first decide\\nhow to fairly divide the work of data collection so as to benefit all agents.\\nMoreover, in naive sharing protocols, strategic agents may under-collect and/or\\nfabricate data, leading to socially undesirable outcomes. Our mechanism\\naddresses these challenges by combining ideas from cooperative and\\nnon-cooperative game theory. We use ideas from axiomatic bargaining to divide\\nthe cost of data collection. Given such a solution, we develop a Nash\\nincentive-compatible (NIC) mechanism to enforce truthful reporting. We achieve\\na $\\\\mathcal{O}(\\\\sqrt{m})$ approximation to the minimum social penalty (sum of\\nagent estimation errors and data collection costs) in the worst case, and a\\n$\\\\mathcal{O}(1)$ approximation under favorable conditions. We complement this\\nwith a hardness result, showing that $\\\\Omega(\\\\sqrt{m})$ is unavoidable in any\\nNIC mechanism.\",\"PeriodicalId\":501316,\"journal\":{\"name\":\"arXiv - CS - Computer Science and Game Theory\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Science and Game Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.15881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Science and Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个协作学习问题,在这个问题中,$m$ 代理通过从正态分布中收集样本来估计一个向量$\mu\in\mathbb{R}^d$,每个代理 $i$ 产生的成本为 $c_{i,k} (0, \infty]$)。\in (0, \infty]$从$k^{text{th}}$分布$\mathcal{N}(\mu_k, \sigma^2)$中采样。代理人可以收集对他们来说便宜的数据,并与其他人分享这些数据,以换取对他们来说昂贵甚至无法获取的数据,从而同时降低数据收集成本和估计误差。然而,当代理人有不同的收集成本时,我们需要首先决定如何公平地分配数据收集工作,以便让所有代理人受益。此外,在天真的分享协议中,策略代理人可能会收集不足和/或伪造数据,从而导致社会不期望的结果。我们的机制结合了合作博弈论和非合作博弈论的思想,解决了这些难题。我们利用公理讨价还价的思想来分摊数据收集的成本。鉴于这种解决方案,我们开发了一种纳什激励兼容(NIC)机制来强制执行真实报告。在最坏的情况下,我们实现了最小社会惩罚(代理估计误差与数据收集成本之和)的$\mathcal{O}(\sqrt{m})$近似值,在有利条件下实现了$\mathcal{O}(1)$近似值。我们补充了一个硬度结果,表明在任何NIC机制中$\Omega(\sqrt{m})$都是不可避免的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Sharing for Mean Estimation Among Heterogeneous Strategic Agents
We study a collaborative learning problem where $m$ agents estimate a vector $\mu\in\mathbb{R}^d$ by collecting samples from normal distributions, with each agent $i$ incurring a cost $c_{i,k} \in (0, \infty]$ to sample from the $k^{\text{th}}$ distribution $\mathcal{N}(\mu_k, \sigma^2)$. Instead of working on their own, agents can collect data that is cheap to them, and share it with others in exchange for data that is expensive or even inaccessible to them, thereby simultaneously reducing data collection costs and estimation error. However, when agents have different collection costs, we need to first decide how to fairly divide the work of data collection so as to benefit all agents. Moreover, in naive sharing protocols, strategic agents may under-collect and/or fabricate data, leading to socially undesirable outcomes. Our mechanism addresses these challenges by combining ideas from cooperative and non-cooperative game theory. We use ideas from axiomatic bargaining to divide the cost of data collection. Given such a solution, we develop a Nash incentive-compatible (NIC) mechanism to enforce truthful reporting. We achieve a $\mathcal{O}(\sqrt{m})$ approximation to the minimum social penalty (sum of agent estimation errors and data collection costs) in the worst case, and a $\mathcal{O}(1)$ approximation under favorable conditions. We complement this with a hardness result, showing that $\Omega(\sqrt{m})$ is unavoidable in any NIC mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MALADY: Multiclass Active Learning with Auction Dynamics on Graphs Mechanism Design for Extending the Accessibility of Facilities Common revenue allocation in DMUs with two stages based on DEA cross-efficiency and cooperative game The common revenue allocation based on modified Shapley value and DEA cross-efficiency On Robustness to $k$-wise Independence of Optimal Bayesian Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1