功率 VDMOS 晶体管中离子诱导辐射损伤的归一化指标

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Nuclear Science Pub Date : 2024-07-22 DOI:10.1109/TNS.2024.3431551
Fengkai Liu;Zhongli Liu;Xin Jin;Shuo Liu;Lei Wu;Jianqun Yang;Jizhou Luo;Ruixiang Xu;Xingji Li
{"title":"功率 VDMOS 晶体管中离子诱导辐射损伤的归一化指标","authors":"Fengkai Liu;Zhongli Liu;Xin Jin;Shuo Liu;Lei Wu;Jianqun Yang;Jizhou Luo;Ruixiang Xu;Xingji Li","doi":"10.1109/TNS.2024.3431551","DOIUrl":null,"url":null,"abstract":"This work presents the impact of heavy ion irradiation on vertical-diffused metal-oxide-semiconductor field-effect transistors (VDMOSFETs), particularly focusing on the ionization and displacement damage pivotal for the operation of devices in space environments. We conducted experiments using irradiation with chlorine, silicon, fluorine, and oxygen ions. Our analysis involves calculating the linear energy transfer (LET) and nonionizing energy loss (NIEL) for various ion incidences, followed by determining the ionizing absorbed dose (\n<inline-formula> <tex-math>$D _{\\mathrm {i}}$ </tex-math></inline-formula>\n) and displacement absorbed dose (\n<inline-formula> <tex-math>$D _{\\mathrm {d}}$ </tex-math></inline-formula>\n) based on these parameters. Subsequently, we normalized the effects of heavy ion irradiation by examining the threshold voltage shift (\n<inline-formula> <tex-math>$\\Delta V _{\\mathrm {TH}}$ </tex-math></inline-formula>\n) for ionization damage, and the drain-leakage current variation (\n<inline-formula> <tex-math>$\\Delta I _{\\mathrm {DLC}}$ </tex-math></inline-formula>\n) and drain-saturation current variation (\n<inline-formula> <tex-math>$\\Delta I _{\\mathrm {DSC}}$ </tex-math></inline-formula>\n) for displacement damage. Our findings reveal that the displacement damage, characterized by the \n<inline-formula> <tex-math>$\\Delta I _{\\mathrm {DLC}}$ </tex-math></inline-formula>\n indicator, serves as a dependable metric for normalizing the impact across varying ion species. This discovery is significant for the equivalent study of different kinds of spaceborne charged ion irradiation in power VDMOS transistors.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"71 8","pages":"1989-1995"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normalization Indicator of Ion-Induced Radiation Damage in Power VDMOS Transistors\",\"authors\":\"Fengkai Liu;Zhongli Liu;Xin Jin;Shuo Liu;Lei Wu;Jianqun Yang;Jizhou Luo;Ruixiang Xu;Xingji Li\",\"doi\":\"10.1109/TNS.2024.3431551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the impact of heavy ion irradiation on vertical-diffused metal-oxide-semiconductor field-effect transistors (VDMOSFETs), particularly focusing on the ionization and displacement damage pivotal for the operation of devices in space environments. We conducted experiments using irradiation with chlorine, silicon, fluorine, and oxygen ions. Our analysis involves calculating the linear energy transfer (LET) and nonionizing energy loss (NIEL) for various ion incidences, followed by determining the ionizing absorbed dose (\\n<inline-formula> <tex-math>$D _{\\\\mathrm {i}}$ </tex-math></inline-formula>\\n) and displacement absorbed dose (\\n<inline-formula> <tex-math>$D _{\\\\mathrm {d}}$ </tex-math></inline-formula>\\n) based on these parameters. Subsequently, we normalized the effects of heavy ion irradiation by examining the threshold voltage shift (\\n<inline-formula> <tex-math>$\\\\Delta V _{\\\\mathrm {TH}}$ </tex-math></inline-formula>\\n) for ionization damage, and the drain-leakage current variation (\\n<inline-formula> <tex-math>$\\\\Delta I _{\\\\mathrm {DLC}}$ </tex-math></inline-formula>\\n) and drain-saturation current variation (\\n<inline-formula> <tex-math>$\\\\Delta I _{\\\\mathrm {DSC}}$ </tex-math></inline-formula>\\n) for displacement damage. Our findings reveal that the displacement damage, characterized by the \\n<inline-formula> <tex-math>$\\\\Delta I _{\\\\mathrm {DLC}}$ </tex-math></inline-formula>\\n indicator, serves as a dependable metric for normalizing the impact across varying ion species. This discovery is significant for the equivalent study of different kinds of spaceborne charged ion irradiation in power VDMOS transistors.\",\"PeriodicalId\":13406,\"journal\":{\"name\":\"IEEE Transactions on Nuclear Science\",\"volume\":\"71 8\",\"pages\":\"1989-1995\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nuclear Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10605844/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nuclear Science","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10605844/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这项研究介绍了重离子辐照对垂直扩散金属氧化物半导体场效应晶体管(VDMOSFET)的影响,尤其侧重于对器件在太空环境中运行至关重要的电离和位移损伤。我们使用氯、硅、氟和氧离子进行了辐照实验。我们的分析包括计算各种离子发生率的线性能量转移(LET)和非电离能量损失(NIEL),然后根据这些参数确定电离吸收剂量($D _{\mathrm {i}}$)和位移吸收剂量($D _{\mathrm {d}}$)。随后,我们通过检测电离损伤的阈值电压偏移($\Delta V _{\mathrm {TH}}$)、位移损伤的漏极泄漏电流变化($\Delta I _{\mathrm {DLC}}$)和漏极饱和电流变化($\Delta I _{\mathrm {DSC}}$),对重离子辐照的影响进行了归一化处理。我们的研究结果表明,以 $\Delta I _{\mathrm {DLC}}$ 指标为特征的位移损伤是对不同离子种类的影响进行归一化的可靠指标。这一发现对于等效研究功率 VDMOS 晶体管中不同种类的空间带电离子辐照具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Normalization Indicator of Ion-Induced Radiation Damage in Power VDMOS Transistors
This work presents the impact of heavy ion irradiation on vertical-diffused metal-oxide-semiconductor field-effect transistors (VDMOSFETs), particularly focusing on the ionization and displacement damage pivotal for the operation of devices in space environments. We conducted experiments using irradiation with chlorine, silicon, fluorine, and oxygen ions. Our analysis involves calculating the linear energy transfer (LET) and nonionizing energy loss (NIEL) for various ion incidences, followed by determining the ionizing absorbed dose ( $D _{\mathrm {i}}$ ) and displacement absorbed dose ( $D _{\mathrm {d}}$ ) based on these parameters. Subsequently, we normalized the effects of heavy ion irradiation by examining the threshold voltage shift ( $\Delta V _{\mathrm {TH}}$ ) for ionization damage, and the drain-leakage current variation ( $\Delta I _{\mathrm {DLC}}$ ) and drain-saturation current variation ( $\Delta I _{\mathrm {DSC}}$ ) for displacement damage. Our findings reveal that the displacement damage, characterized by the $\Delta I _{\mathrm {DLC}}$ indicator, serves as a dependable metric for normalizing the impact across varying ion species. This discovery is significant for the equivalent study of different kinds of spaceborne charged ion irradiation in power VDMOS transistors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Nuclear Science
IEEE Transactions on Nuclear Science 工程技术-工程:电子与电气
CiteScore
3.70
自引率
27.80%
发文量
314
审稿时长
6.2 months
期刊介绍: The IEEE Transactions on Nuclear Science is a publication of the IEEE Nuclear and Plasma Sciences Society. It is viewed as the primary source of technical information in many of the areas it covers. As judged by JCR impact factor, TNS consistently ranks in the top five journals in the category of Nuclear Science & Technology. It has one of the higher immediacy indices, indicating that the information it publishes is viewed as timely, and has a relatively long citation half-life, indicating that the published information also is viewed as valuable for a number of years. The IEEE Transactions on Nuclear Science is published bimonthly. Its scope includes all aspects of the theory and application of nuclear science and engineering. It focuses on instrumentation for the detection and measurement of ionizing radiation; particle accelerators and their controls; nuclear medicine and its application; effects of radiation on materials, components, and systems; reactor instrumentation and controls; and measurement of radiation in space.
期刊最新文献
Affiliate Plan of the IEEE Nuclear and Plasma Sciences Society Table of Contents IEEE Transactions on Nuclear Science publication information IEEE Transactions on Nuclear Science information for authors TechRxiv: Share Your Preprint Research with the World!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1