Audreyana L.N. Nash , Seth D. Newsome , Kelton W. McMahon
{"title":"关于精确度和准确性:氨基酸特定化合物同位素分析现状综述","authors":"Audreyana L.N. Nash , Seth D. Newsome , Kelton W. McMahon","doi":"10.1016/j.orggeochem.2024.104823","DOIUrl":null,"url":null,"abstract":"<div><p>Compound specific stable isotope analysis of amino acids (CSIA-AA) is a practice that allows for in-depth studies of many different physiological, ecological, and environmental phenomena. The vast information obtainable through CSIA-AA has driven the exponential growth of this field since its mainstream introduction in the early 1990s. This growth, however, has been accompanied by the development of several distinct analytical approaches. Throughout this review, we outline the full CSIA-AA process and identify areas of its workflow with the highest potential to introduce measurement error. Through a meta-analysis of CSIA-AA publications, we found that rather than experimental application, the primary determinant of methodology lies in the geographic location of the analyst, likely reflective of the academic lineages of CSIA-AA practitioners as opposed to application specific method development. The relative nascency of amino acid isotope analysis gives it incredible expansion potential, but such expansion would greatly benefit from comprehensive experimentation optimizing every portion of the analytical process. While such optimization will require expertise across many areas (i.e., chemistry, mass spectrometry, and data science), uniform guidelines can ensure the highest achievable accuracy and precision for intra- and interlaboratory analyses, alike. The goal of this review is to improve data comparability and adopt standardized methodologies to uniformly generate highly accurate, precise, and reproducible data. In doing so, we make recommendations for areas that would benefit from further investigation (e.g., procedure optimization, error mitigation, and data handling methods). The creation and implementation of guidelines for optimal approaches to CSIA-AA – as has been done for applications like forensic science – can help realize the full potential of this rapidly growing field.</p></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"195 ","pages":"Article 104823"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0146638024000883/pdfft?md5=cdca87150839a3714e52c9d2b08aa50c&pid=1-s2.0-S0146638024000883-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On precision and accuracy: A review of the state of compound-specific isotope analysis of amino acids\",\"authors\":\"Audreyana L.N. Nash , Seth D. Newsome , Kelton W. McMahon\",\"doi\":\"10.1016/j.orggeochem.2024.104823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Compound specific stable isotope analysis of amino acids (CSIA-AA) is a practice that allows for in-depth studies of many different physiological, ecological, and environmental phenomena. The vast information obtainable through CSIA-AA has driven the exponential growth of this field since its mainstream introduction in the early 1990s. This growth, however, has been accompanied by the development of several distinct analytical approaches. Throughout this review, we outline the full CSIA-AA process and identify areas of its workflow with the highest potential to introduce measurement error. Through a meta-analysis of CSIA-AA publications, we found that rather than experimental application, the primary determinant of methodology lies in the geographic location of the analyst, likely reflective of the academic lineages of CSIA-AA practitioners as opposed to application specific method development. The relative nascency of amino acid isotope analysis gives it incredible expansion potential, but such expansion would greatly benefit from comprehensive experimentation optimizing every portion of the analytical process. While such optimization will require expertise across many areas (i.e., chemistry, mass spectrometry, and data science), uniform guidelines can ensure the highest achievable accuracy and precision for intra- and interlaboratory analyses, alike. The goal of this review is to improve data comparability and adopt standardized methodologies to uniformly generate highly accurate, precise, and reproducible data. In doing so, we make recommendations for areas that would benefit from further investigation (e.g., procedure optimization, error mitigation, and data handling methods). The creation and implementation of guidelines for optimal approaches to CSIA-AA – as has been done for applications like forensic science – can help realize the full potential of this rapidly growing field.</p></div>\",\"PeriodicalId\":400,\"journal\":{\"name\":\"Organic Geochemistry\",\"volume\":\"195 \",\"pages\":\"Article 104823\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0146638024000883/pdfft?md5=cdca87150839a3714e52c9d2b08aa50c&pid=1-s2.0-S0146638024000883-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0146638024000883\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146638024000883","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
On precision and accuracy: A review of the state of compound-specific isotope analysis of amino acids
Compound specific stable isotope analysis of amino acids (CSIA-AA) is a practice that allows for in-depth studies of many different physiological, ecological, and environmental phenomena. The vast information obtainable through CSIA-AA has driven the exponential growth of this field since its mainstream introduction in the early 1990s. This growth, however, has been accompanied by the development of several distinct analytical approaches. Throughout this review, we outline the full CSIA-AA process and identify areas of its workflow with the highest potential to introduce measurement error. Through a meta-analysis of CSIA-AA publications, we found that rather than experimental application, the primary determinant of methodology lies in the geographic location of the analyst, likely reflective of the academic lineages of CSIA-AA practitioners as opposed to application specific method development. The relative nascency of amino acid isotope analysis gives it incredible expansion potential, but such expansion would greatly benefit from comprehensive experimentation optimizing every portion of the analytical process. While such optimization will require expertise across many areas (i.e., chemistry, mass spectrometry, and data science), uniform guidelines can ensure the highest achievable accuracy and precision for intra- and interlaboratory analyses, alike. The goal of this review is to improve data comparability and adopt standardized methodologies to uniformly generate highly accurate, precise, and reproducible data. In doing so, we make recommendations for areas that would benefit from further investigation (e.g., procedure optimization, error mitigation, and data handling methods). The creation and implementation of guidelines for optimal approaches to CSIA-AA – as has been done for applications like forensic science – can help realize the full potential of this rapidly growing field.
期刊介绍:
Organic Geochemistry serves as the only dedicated medium for the publication of peer-reviewed research on all phases of geochemistry in which organic compounds play a major role. The Editors welcome contributions covering a wide spectrum of subjects in the geosciences broadly based on organic chemistry (including molecular and isotopic geochemistry), and involving geology, biogeochemistry, environmental geochemistry, chemical oceanography and hydrology.
The scope of the journal includes research involving petroleum (including natural gas), coal, organic matter in the aqueous environment and recent sediments, organic-rich rocks and soils and the role of organics in the geochemical cycling of the elements.
Sedimentological, paleontological and organic petrographic studies will also be considered for publication, provided that they are geochemically oriented. Papers cover the full range of research activities in organic geochemistry, and include comprehensive review articles, technical communications, discussion/reply correspondence and short technical notes. Peer-reviews organised through three Chief Editors and a staff of Associate Editors, are conducted by well known, respected scientists from academia, government and industry. The journal also publishes reviews of books, announcements of important conferences and meetings and other matters of direct interest to the organic geochemical community.