超四方 BaZrS3:具有巨铁电性和低带隙的前景广阔的过氧化物硫化物

IF 6.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Science China Physics, Mechanics & Astronomy Pub Date : 2024-07-18 DOI:10.1007/s11433-024-2394-1
Menglu Li, Sa Zhang, Chenhan Liu, Xiaotao Zu, Liang Qiao, Haiyan Xiao
{"title":"超四方 BaZrS3:具有巨铁电性和低带隙的前景广阔的过氧化物硫化物","authors":"Menglu Li,&nbsp;Sa Zhang,&nbsp;Chenhan Liu,&nbsp;Xiaotao Zu,&nbsp;Liang Qiao,&nbsp;Haiyan Xiao","doi":"10.1007/s11433-024-2394-1","DOIUrl":null,"url":null,"abstract":"<div><p>Over the past century, ferroelectricity has offered exciting opportunities for fundamental research and device applications. However, most of the discovered excellent ferroelectrics are oxide materials with large band gaps, limiting their potential for optoelectronics applications. Here using first-principles calculations we identify a new narrow-gap ferroelectric beyond oxides, i.e., ferroelectric perovskite sulphide BaZrS<sub>3</sub>. Under large compressive strains, BaZrS<sub>3</sub> can be stabilized into a unique super-tetragonal phase with an extraordinary polarization of 67.16 µC/cm<sup>2</sup>, which is even stronger than that of conventional oxide ferroelectrics. Excitingly, the supertetragonal BaZrS<sub>3</sub> exhibits a direct narrow band gap of 1.2 eV and excellent electronic properties. Based on the chemical bonding analysis, we attribute the formation of supertetragonal phase to charge re-ordering in which the π bond overlap along the long 〈Zr-S〉 bond completely vanishes and the antibonding states of the σ bond appear below the Fermi level. Our work provides a conceptual strategy for designing new ferroelectrics for electronic and photovoltaic applications.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supertetragonal BaZrS3: A promising perovskite sulphide with giant ferroelectricity and low band gap\",\"authors\":\"Menglu Li,&nbsp;Sa Zhang,&nbsp;Chenhan Liu,&nbsp;Xiaotao Zu,&nbsp;Liang Qiao,&nbsp;Haiyan Xiao\",\"doi\":\"10.1007/s11433-024-2394-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Over the past century, ferroelectricity has offered exciting opportunities for fundamental research and device applications. However, most of the discovered excellent ferroelectrics are oxide materials with large band gaps, limiting their potential for optoelectronics applications. Here using first-principles calculations we identify a new narrow-gap ferroelectric beyond oxides, i.e., ferroelectric perovskite sulphide BaZrS<sub>3</sub>. Under large compressive strains, BaZrS<sub>3</sub> can be stabilized into a unique super-tetragonal phase with an extraordinary polarization of 67.16 µC/cm<sup>2</sup>, which is even stronger than that of conventional oxide ferroelectrics. Excitingly, the supertetragonal BaZrS<sub>3</sub> exhibits a direct narrow band gap of 1.2 eV and excellent electronic properties. Based on the chemical bonding analysis, we attribute the formation of supertetragonal phase to charge re-ordering in which the π bond overlap along the long 〈Zr-S〉 bond completely vanishes and the antibonding states of the σ bond appear below the Fermi level. Our work provides a conceptual strategy for designing new ferroelectrics for electronic and photovoltaic applications.</p></div>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11433-024-2394-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2394-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在过去的一个世纪里,铁电为基础研究和器件应用提供了令人兴奋的机会。然而,大多数已发现的优秀铁电体都是具有较大带隙的氧化物材料,这限制了它们在光电应用方面的潜力。在此,我们利用第一性原理计算发现了一种超越氧化物的新型窄隙铁电体,即铁电透辉石硫化物 BaZrS3。在大的压缩应变作用下,BaZrS3 可以稳定为独特的超四方相,其极化高达 67.16 µC/cm2,甚至强于传统的氧化物铁电体。令人兴奋的是,超四方 BaZrS3 直接显示出 1.2 eV 的窄带隙和优异的电子特性。基于化学键分析,我们将超四方相的形成归因于电荷重排,其中沿着长〈Zr-S〉键的π键重叠完全消失,σ键的反键态出现在费米级以下。我们的研究为设计用于电子和光伏应用的新型铁电体提供了概念性策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supertetragonal BaZrS3: A promising perovskite sulphide with giant ferroelectricity and low band gap

Over the past century, ferroelectricity has offered exciting opportunities for fundamental research and device applications. However, most of the discovered excellent ferroelectrics are oxide materials with large band gaps, limiting their potential for optoelectronics applications. Here using first-principles calculations we identify a new narrow-gap ferroelectric beyond oxides, i.e., ferroelectric perovskite sulphide BaZrS3. Under large compressive strains, BaZrS3 can be stabilized into a unique super-tetragonal phase with an extraordinary polarization of 67.16 µC/cm2, which is even stronger than that of conventional oxide ferroelectrics. Excitingly, the supertetragonal BaZrS3 exhibits a direct narrow band gap of 1.2 eV and excellent electronic properties. Based on the chemical bonding analysis, we attribute the formation of supertetragonal phase to charge re-ordering in which the π bond overlap along the long 〈Zr-S〉 bond completely vanishes and the antibonding states of the σ bond appear below the Fermi level. Our work provides a conceptual strategy for designing new ferroelectrics for electronic and photovoltaic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
期刊最新文献
Convergent Richtmyer-Meshkov instability on two-dimensional tri-mode interfaces Field intensity dependence of the dissociative multiple ionization of argon dimers in strong femtosecond laser fields Inverse design of quasi-bound states in the continuum metasurface for the polarization independent enhancement of Goos-Hänchen shift Anisotropic coherence induced nonuniform amplification in N +2 Self-consistent extraction of photoabsorption time delays in attosecond streak camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1