利用双体积热源对激光-MIG 混合焊接中的热机械耦合进行数值模拟

Xing Han, Lei Feng, Chang Li, Han Sun
{"title":"利用双体积热源对激光-MIG 混合焊接中的热机械耦合进行数值模拟","authors":"Xing Han, Lei Feng, Chang Li, Han Sun","doi":"10.1177/09544062241257086","DOIUrl":null,"url":null,"abstract":"Laser-MIG hybrid welding is an energy-saving welding process. It is of great significance to quantitatively investigate the instantaneous evolution of temperature and stress in the process of hybrid welding to reveal the mechanism of hybrid welding and improve welding quality. Existing studies lack systematic analysis of temperature field and thermal stress field of laser-MIG hybrid welding of stainless steel, and there are relatively few literatures comparing traditional MIG welding and hybrid welding process. In this paper, the thermal mechanical coupling model of laser-MIG hybrid welding of SUS301L-HT stainless steel was established by numerical simulation. The temperature field, thermal stress field, and residual stress field distribution of the hybrid welding were quantitatively revealed, and compared with traditional MIG welding. The calculation results show that compared with the traditional single-heat source MIG welding, the center temperature of the laser-MIG hybrid welding pool is higher, and the peak temperature can reach 3386 K. Compared with the traditional MIG arc welding, the thermal stress distribution of laser-MIG hybrid welding is more uniform and the thermal stress value is lower at the same time. The distribution trend of residual stress in the two welding processes is similar. The overall residual stress in hybrid welding is relatively small, and the transverse residual stress and the thickness residual stress both have peak values in the heat affected zone. The research can provide theoretical reference and guidance for optimizing stainless steel hybrid welding process and improving welding quality and efficiency.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of thermo-mechanical coupling in laser-MIG hybrid welding utilizing dual volume heat sources\",\"authors\":\"Xing Han, Lei Feng, Chang Li, Han Sun\",\"doi\":\"10.1177/09544062241257086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser-MIG hybrid welding is an energy-saving welding process. It is of great significance to quantitatively investigate the instantaneous evolution of temperature and stress in the process of hybrid welding to reveal the mechanism of hybrid welding and improve welding quality. Existing studies lack systematic analysis of temperature field and thermal stress field of laser-MIG hybrid welding of stainless steel, and there are relatively few literatures comparing traditional MIG welding and hybrid welding process. In this paper, the thermal mechanical coupling model of laser-MIG hybrid welding of SUS301L-HT stainless steel was established by numerical simulation. The temperature field, thermal stress field, and residual stress field distribution of the hybrid welding were quantitatively revealed, and compared with traditional MIG welding. The calculation results show that compared with the traditional single-heat source MIG welding, the center temperature of the laser-MIG hybrid welding pool is higher, and the peak temperature can reach 3386 K. Compared with the traditional MIG arc welding, the thermal stress distribution of laser-MIG hybrid welding is more uniform and the thermal stress value is lower at the same time. The distribution trend of residual stress in the two welding processes is similar. The overall residual stress in hybrid welding is relatively small, and the transverse residual stress and the thickness residual stress both have peak values in the heat affected zone. The research can provide theoretical reference and guidance for optimizing stainless steel hybrid welding process and improving welding quality and efficiency.\",\"PeriodicalId\":20558,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544062241257086\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544062241257086","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

激光-MIG 混合焊接是一种节能焊接工艺。定量研究混合焊接过程中温度和应力的瞬时变化对揭示混合焊接机理、提高焊接质量具有重要意义。现有研究缺乏对不锈钢激光-MIG 混合焊接温度场和热应力场的系统分析,对传统 MIG 焊接和混合焊接工艺进行比较的文献也相对较少。本文通过数值模拟建立了 SUS301L-HT 不锈钢激光-MIG 混合焊接的热机械耦合模型。定量揭示了混合焊接的温度场、热应力场和残余应力场分布,并与传统 MIG 焊接进行了比较。计算结果表明,与传统的单热源 MIG 焊接相比,激光-MIG 混合焊接熔池中心温度更高,峰值温度可达 3386 K;与传统的 MIG 弧焊相比,激光-MIG 混合焊接的热应力分布更均匀,同时热应力值更低。两种焊接工艺的残余应力分布趋势相似。混合焊接的整体残余应力相对较小,横向残余应力和厚度残余应力在热影响区都有峰值。该研究可为优化不锈钢混合焊接工艺、提高焊接质量和效率提供理论参考和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical simulation of thermo-mechanical coupling in laser-MIG hybrid welding utilizing dual volume heat sources
Laser-MIG hybrid welding is an energy-saving welding process. It is of great significance to quantitatively investigate the instantaneous evolution of temperature and stress in the process of hybrid welding to reveal the mechanism of hybrid welding and improve welding quality. Existing studies lack systematic analysis of temperature field and thermal stress field of laser-MIG hybrid welding of stainless steel, and there are relatively few literatures comparing traditional MIG welding and hybrid welding process. In this paper, the thermal mechanical coupling model of laser-MIG hybrid welding of SUS301L-HT stainless steel was established by numerical simulation. The temperature field, thermal stress field, and residual stress field distribution of the hybrid welding were quantitatively revealed, and compared with traditional MIG welding. The calculation results show that compared with the traditional single-heat source MIG welding, the center temperature of the laser-MIG hybrid welding pool is higher, and the peak temperature can reach 3386 K. Compared with the traditional MIG arc welding, the thermal stress distribution of laser-MIG hybrid welding is more uniform and the thermal stress value is lower at the same time. The distribution trend of residual stress in the two welding processes is similar. The overall residual stress in hybrid welding is relatively small, and the transverse residual stress and the thickness residual stress both have peak values in the heat affected zone. The research can provide theoretical reference and guidance for optimizing stainless steel hybrid welding process and improving welding quality and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
10.00%
发文量
625
审稿时长
4.3 months
期刊介绍: The Journal of Mechanical Engineering Science advances the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in engineering.
期刊最新文献
Research and analysis of rock breaking mechanical model of single-roller PDC compound bit Hybrid force-position coordinated control of a parallel mechanism with the number of redundant actuators equal to its DOF Rapid motion planning of manipulator in three-dimensional space under multiple scenes Oil and gas pipeline robot localization techniques: A review Anisogrid lattice structure in thermoplastic composite by filament gun deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1