{"title":"针对摆线针轮减速机非线性特性的改进型传动效率预测方法","authors":"Xincheng Wang, Huaming Wang, Luyang Li, Linbo Hao","doi":"10.1177/09544062241258908","DOIUrl":null,"url":null,"abstract":"This study aims to accurately predict the nonlinear characteristics of transmission efficiency of cycloid reducers under different operating conditions. Firstly, equivalent modeling of the multi-source errors (MSEs) in the designed cycloid reducer is conducted. Force analysis algorithms considering MSEs are proposed for the cycloid drive mechanism, the output mechanism, and the bearings. Secondly, mathematical models are established for the load-dependent power losses, while an equivalent test is used for modeling load-independent power losses. Subsequently, an improved transmission efficiency prediction (TEP) method for cycloid reducers is proposed, which is then applied to the performance prediction of a prototype under different operating conditions. The advantages of the improved TEP method over the conventional method are discussed, and the influences of MSEs and load-independent power losses on the nonlinear characteristics of transmission efficiency are summarized. Finally, tests are conducted for the reducer prototype, and the test results are found to be in good agreement with the results obtained by the proposed TEP method. The main contribution of this study is to establish a solid algorithmic and modeling foundation for the optimal design of nonlinear transmission efficiency in cycloid reducers and provide reliable guidance for their engineering applications.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"9 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved transmission efficiency prediction method for nonlinear characteristics of the cycloid reducer\",\"authors\":\"Xincheng Wang, Huaming Wang, Luyang Li, Linbo Hao\",\"doi\":\"10.1177/09544062241258908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to accurately predict the nonlinear characteristics of transmission efficiency of cycloid reducers under different operating conditions. Firstly, equivalent modeling of the multi-source errors (MSEs) in the designed cycloid reducer is conducted. Force analysis algorithms considering MSEs are proposed for the cycloid drive mechanism, the output mechanism, and the bearings. Secondly, mathematical models are established for the load-dependent power losses, while an equivalent test is used for modeling load-independent power losses. Subsequently, an improved transmission efficiency prediction (TEP) method for cycloid reducers is proposed, which is then applied to the performance prediction of a prototype under different operating conditions. The advantages of the improved TEP method over the conventional method are discussed, and the influences of MSEs and load-independent power losses on the nonlinear characteristics of transmission efficiency are summarized. Finally, tests are conducted for the reducer prototype, and the test results are found to be in good agreement with the results obtained by the proposed TEP method. The main contribution of this study is to establish a solid algorithmic and modeling foundation for the optimal design of nonlinear transmission efficiency in cycloid reducers and provide reliable guidance for their engineering applications.\",\"PeriodicalId\":20558,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544062241258908\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544062241258908","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在准确预测摆线针轮减速器在不同工作条件下传动效率的非线性特性。首先,对所设计的摆线针轮减速器中的多源误差(MSE)进行了等效建模。针对摆线针轮传动机构、输出机构和轴承提出了考虑 MSE 的受力分析算法。其次,建立了与负载相关的功率损耗数学模型,并使用等效测试对与负载无关的功率损耗进行建模。随后,提出了一种改进的摆线针轮减速机传动效率预测(TEP)方法,并将其应用于不同工作条件下的原型机性能预测。讨论了改进的 TEP 方法相对于传统方法的优势,并总结了 MSE 和与负载无关的功率损耗对传输效率非线性特性的影响。最后,对减速器原型进行了测试,发现测试结果与所提出的 TEP 方法得出的结果十分吻合。本研究的主要贡献在于为摆线针轮减速器非线性传动效率的优化设计奠定了坚实的算法和建模基础,并为其工程应用提供了可靠的指导。
An improved transmission efficiency prediction method for nonlinear characteristics of the cycloid reducer
This study aims to accurately predict the nonlinear characteristics of transmission efficiency of cycloid reducers under different operating conditions. Firstly, equivalent modeling of the multi-source errors (MSEs) in the designed cycloid reducer is conducted. Force analysis algorithms considering MSEs are proposed for the cycloid drive mechanism, the output mechanism, and the bearings. Secondly, mathematical models are established for the load-dependent power losses, while an equivalent test is used for modeling load-independent power losses. Subsequently, an improved transmission efficiency prediction (TEP) method for cycloid reducers is proposed, which is then applied to the performance prediction of a prototype under different operating conditions. The advantages of the improved TEP method over the conventional method are discussed, and the influences of MSEs and load-independent power losses on the nonlinear characteristics of transmission efficiency are summarized. Finally, tests are conducted for the reducer prototype, and the test results are found to be in good agreement with the results obtained by the proposed TEP method. The main contribution of this study is to establish a solid algorithmic and modeling foundation for the optimal design of nonlinear transmission efficiency in cycloid reducers and provide reliable guidance for their engineering applications.
期刊介绍:
The Journal of Mechanical Engineering Science advances the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in engineering.