火花等离子烧结 Ti-V-Al-Nb-Hf 高熵合金的微观结构和纳米划痕行为

Sheetal Kumar Dewangan, Nagarjuna Cheenepalli, Hansung Lee, Byungmin Ahn
{"title":"火花等离子烧结 Ti-V-Al-Nb-Hf 高熵合金的微观结构和纳米划痕行为","authors":"Sheetal Kumar Dewangan, Nagarjuna Cheenepalli, Hansung Lee, Byungmin Ahn","doi":"10.1016/j.jmrt.2024.07.081","DOIUrl":null,"url":null,"abstract":"In this work, an equiatomic Ti-V-Al-Nb-Hf high-entropy alloy (HEA) was designed by thermodynamic simulation and prepared experimentally via a powder metallurgy approach. A nanoindentation and nano scratch technique was used to study the mechanical and friction behavior of the HEA. The results revealed that a nano hardness of 7.39 ± 0.4 GPa and an elastic modulus of 140.75 ± 6.3 GPa was achieved. The coefficient of friction (COF) and creep behavior of the alloy were studied by scratch tests in ramping mode under constant-loading conditions. The COF quickly increased as the normal load increased at the beginning stage of creep performance. Additionally, three-dimensional modeling was performed to obtain a graphical representation, which can be used to explore the morphology and geometry of the scratched track. From the experimental findings, the creep behavior of the alloy is classified into two separate regimes: transient and steady-state regions. The present study demonstrates the scratch and creep behavior of the HEA in the context of the scratch mechanisms.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and nanoscratch behavior of spark-plasma-sintered Ti-V-Al-Nb-Hf high-entropy alloy\",\"authors\":\"Sheetal Kumar Dewangan, Nagarjuna Cheenepalli, Hansung Lee, Byungmin Ahn\",\"doi\":\"10.1016/j.jmrt.2024.07.081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, an equiatomic Ti-V-Al-Nb-Hf high-entropy alloy (HEA) was designed by thermodynamic simulation and prepared experimentally via a powder metallurgy approach. A nanoindentation and nano scratch technique was used to study the mechanical and friction behavior of the HEA. The results revealed that a nano hardness of 7.39 ± 0.4 GPa and an elastic modulus of 140.75 ± 6.3 GPa was achieved. The coefficient of friction (COF) and creep behavior of the alloy were studied by scratch tests in ramping mode under constant-loading conditions. The COF quickly increased as the normal load increased at the beginning stage of creep performance. Additionally, three-dimensional modeling was performed to obtain a graphical representation, which can be used to explore the morphology and geometry of the scratched track. From the experimental findings, the creep behavior of the alloy is classified into two separate regimes: transient and steady-state regions. The present study demonstrates the scratch and creep behavior of the HEA in the context of the scratch mechanisms.\",\"PeriodicalId\":501120,\"journal\":{\"name\":\"Journal of Materials Research and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmrt.2024.07.081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.07.081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,通过热力学模拟设计了等原子 Ti-V-Al-Nb-Hf 高熵合金 (HEA),并通过粉末冶金方法进行了实验制备。采用纳米压痕和纳米划痕技术研究了 HEA 的机械和摩擦行为。结果显示,纳米硬度为 7.39 ± 0.4 GPa,弹性模量为 140.75 ± 6.3 GPa。在恒定加载条件下,通过斜坡模式划痕试验研究了合金的摩擦系数(COF)和蠕变行为。在蠕变性能的初始阶段,随着法向载荷的增加,摩擦系数迅速增大。此外,还进行了三维建模,以获得图形表示,用于探索划痕轨迹的形态和几何形状。从实验结果来看,合金的蠕变行为分为两种不同的状态:瞬态区和稳态区。本研究从划痕机理的角度展示了 HEA 的划痕和蠕变行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microstructure and nanoscratch behavior of spark-plasma-sintered Ti-V-Al-Nb-Hf high-entropy alloy
In this work, an equiatomic Ti-V-Al-Nb-Hf high-entropy alloy (HEA) was designed by thermodynamic simulation and prepared experimentally via a powder metallurgy approach. A nanoindentation and nano scratch technique was used to study the mechanical and friction behavior of the HEA. The results revealed that a nano hardness of 7.39 ± 0.4 GPa and an elastic modulus of 140.75 ± 6.3 GPa was achieved. The coefficient of friction (COF) and creep behavior of the alloy were studied by scratch tests in ramping mode under constant-loading conditions. The COF quickly increased as the normal load increased at the beginning stage of creep performance. Additionally, three-dimensional modeling was performed to obtain a graphical representation, which can be used to explore the morphology and geometry of the scratched track. From the experimental findings, the creep behavior of the alloy is classified into two separate regimes: transient and steady-state regions. The present study demonstrates the scratch and creep behavior of the HEA in the context of the scratch mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revealing the microstructural evolution and mechanical response of repaired Fe–Cr–Si based alloy by directed energy deposition Non-planar additive manufacturing of pre-impregnated continuous fiber reinforced composites using a three-axis printer Microstructure and mechanical property of high-density 7075 Al alloy by compression molding of POM-based feedstock Effect of microstructural inheritance window on the mechanical properties of an intercritically annealed Q&P steel Clarifying the effect of irradiation and thermal treatment on the austenitic microstructure and austenitic hardening in austenitic stainless steel weld metal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1