添加锂对 AA6061 合金沉淀行为的影响

Hyeon-Woo Son, Sung-Ho Kang, Kwangjun Euh, Yun-Soo Lee, Kyoungdoc Kim
{"title":"添加锂对 AA6061 合金沉淀行为的影响","authors":"Hyeon-Woo Son, Sung-Ho Kang, Kwangjun Euh, Yun-Soo Lee, Kyoungdoc Kim","doi":"10.1016/j.jmrt.2024.07.103","DOIUrl":null,"url":null,"abstract":"This study investigates the effect of minor Li addition on the solute clustering and thermal stability of precipitates in artificially aged Al–Mg–Si–Cu (AA6061) alloys. Li addition hinders the initial changes in hardness and electrical conductivity by delaying solute clustering during early aging. The delay in cluster formation is attributed to the disturbance of Mg enrichment by the formation of Si–Li clusters, unlike the Sn element with vacancy-trapping effect. Additionally, Li addition is found to coarsen the precipitates during over aging, thereby reducing the thermal stability of the Al–Mg–Si–Cu alloy. Gibbsian interfacial excess calculations of the Li solute indicate that the low coarsening resistance of the Li-containing precipitate is mainly caused by the small amount of equilibrium Li segregation at the internal interface between the matrix and over-aged precipitate. A decrease in the number of nucleation sites, originating from the suppression of cluster formation in the early-aging stage, is also suggested as a reason for the coarse precipitate structure. Finally, despite the high solubility of Li into precipitates, Li addition does not disorder or change the crystal structure of the precipitates. It simply increases the volume of the precipitate by an amount equivalent to or greater than the added Li, without increasing the thermal stability.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Li addition on the precipitation behavior of AA6061 alloy\",\"authors\":\"Hyeon-Woo Son, Sung-Ho Kang, Kwangjun Euh, Yun-Soo Lee, Kyoungdoc Kim\",\"doi\":\"10.1016/j.jmrt.2024.07.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the effect of minor Li addition on the solute clustering and thermal stability of precipitates in artificially aged Al–Mg–Si–Cu (AA6061) alloys. Li addition hinders the initial changes in hardness and electrical conductivity by delaying solute clustering during early aging. The delay in cluster formation is attributed to the disturbance of Mg enrichment by the formation of Si–Li clusters, unlike the Sn element with vacancy-trapping effect. Additionally, Li addition is found to coarsen the precipitates during over aging, thereby reducing the thermal stability of the Al–Mg–Si–Cu alloy. Gibbsian interfacial excess calculations of the Li solute indicate that the low coarsening resistance of the Li-containing precipitate is mainly caused by the small amount of equilibrium Li segregation at the internal interface between the matrix and over-aged precipitate. A decrease in the number of nucleation sites, originating from the suppression of cluster formation in the early-aging stage, is also suggested as a reason for the coarse precipitate structure. Finally, despite the high solubility of Li into precipitates, Li addition does not disorder or change the crystal structure of the precipitates. It simply increases the volume of the precipitate by an amount equivalent to or greater than the added Li, without increasing the thermal stability.\",\"PeriodicalId\":501120,\"journal\":{\"name\":\"Journal of Materials Research and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmrt.2024.07.103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.07.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了少量添加锂对人工老化铝镁硅铜(AA6061)合金中沉淀物的溶质团聚和热稳定性的影响。在早期时效过程中,锂的添加通过延迟溶质团聚,阻碍了硬度和导电性的初始变化。簇的形成延迟是由于硅-锂簇的形成干扰了镁的富集,这与具有空位捕获效应的锡元素不同。此外,在过度老化过程中,锂的加入会使析出物变粗,从而降低铝镁硅铜合金的热稳定性。锂溶质的吉布斯界面过量计算表明,含锂沉淀物的低抗粗化性主要是由基体和过时效沉淀物内部界面的少量平衡锂偏析造成的。此外,由于早期老化阶段团簇形成受到抑制,成核点数量减少也是沉淀结构变粗的原因之一。最后,尽管锂在沉淀中的溶解度很高,但锂的加入并没有使沉淀的晶体结构紊乱或改变。它只是增加了沉淀物的体积,其增加量等于或大于所添加的锂,而不会增加热稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Li addition on the precipitation behavior of AA6061 alloy
This study investigates the effect of minor Li addition on the solute clustering and thermal stability of precipitates in artificially aged Al–Mg–Si–Cu (AA6061) alloys. Li addition hinders the initial changes in hardness and electrical conductivity by delaying solute clustering during early aging. The delay in cluster formation is attributed to the disturbance of Mg enrichment by the formation of Si–Li clusters, unlike the Sn element with vacancy-trapping effect. Additionally, Li addition is found to coarsen the precipitates during over aging, thereby reducing the thermal stability of the Al–Mg–Si–Cu alloy. Gibbsian interfacial excess calculations of the Li solute indicate that the low coarsening resistance of the Li-containing precipitate is mainly caused by the small amount of equilibrium Li segregation at the internal interface between the matrix and over-aged precipitate. A decrease in the number of nucleation sites, originating from the suppression of cluster formation in the early-aging stage, is also suggested as a reason for the coarse precipitate structure. Finally, despite the high solubility of Li into precipitates, Li addition does not disorder or change the crystal structure of the precipitates. It simply increases the volume of the precipitate by an amount equivalent to or greater than the added Li, without increasing the thermal stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revealing the microstructural evolution and mechanical response of repaired Fe–Cr–Si based alloy by directed energy deposition Non-planar additive manufacturing of pre-impregnated continuous fiber reinforced composites using a three-axis printer Microstructure and mechanical property of high-density 7075 Al alloy by compression molding of POM-based feedstock Effect of microstructural inheritance window on the mechanical properties of an intercritically annealed Q&P steel Clarifying the effect of irradiation and thermal treatment on the austenitic microstructure and austenitic hardening in austenitic stainless steel weld metal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1