三维空间水下气泡运动的最新拉格朗日粒子流体力学(ULPH)模拟

IF 8.7 2区 工程技术 Q1 Mathematics Engineering with Computers Pub Date : 2024-07-27 DOI:10.1007/s00366-024-02032-9
Xingyu Kan, Jiale Yan, Shaofan Li, Jingzhu Wang, Yiwei Wang, Yonggang Chen
{"title":"三维空间水下气泡运动的最新拉格朗日粒子流体力学(ULPH)模拟","authors":"Xingyu Kan, Jiale Yan, Shaofan Li, Jingzhu Wang, Yiwei Wang, Yonggang Chen","doi":"10.1007/s00366-024-02032-9","DOIUrl":null,"url":null,"abstract":"<p>Rising bubbles are often encountered in many engineering fields and have diverse applications. A thorough understanding of bubble rising phenomenon is crucial in these engineering applications. In this study, we employ the developed updated Lagrangian particle hydrodynamics (ULPH) multiphase flow model to investigate the dynamic behavior of bubble flow in quiescent liquids, including bubble rise, deformation, fragmentation, and coalescence. First, a comprehensive numerical study of the influences of computational domain dimensions and fluid/bubble density ratios at the multiphase interface on bubble dynamics is conducted. Subsequently, a variety of scenarios featuring single bubble rising in viscous fluid media are examined. The ULPH simulation results are validated against experimental data, the Level-set (LS) method and Lattice Boltzmann Method (LBM) results. Furthermore, results of three calculations are presented, including dynamic characterization of two horizontal coaxial bubbles, three vertical coaxial bubbles and a single bubble in the presence of an obstacle. The results indicate that the established ULPH multiphase flow model is effective in accurately simulating dynamic characteristics of rising bubbles under various conditions, affirming its applicability in engineering analyses.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Updated Lagrangian particle hydrodynamics (ULPH) simulations of underwater bubble motions in three-dimensional space\",\"authors\":\"Xingyu Kan, Jiale Yan, Shaofan Li, Jingzhu Wang, Yiwei Wang, Yonggang Chen\",\"doi\":\"10.1007/s00366-024-02032-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rising bubbles are often encountered in many engineering fields and have diverse applications. A thorough understanding of bubble rising phenomenon is crucial in these engineering applications. In this study, we employ the developed updated Lagrangian particle hydrodynamics (ULPH) multiphase flow model to investigate the dynamic behavior of bubble flow in quiescent liquids, including bubble rise, deformation, fragmentation, and coalescence. First, a comprehensive numerical study of the influences of computational domain dimensions and fluid/bubble density ratios at the multiphase interface on bubble dynamics is conducted. Subsequently, a variety of scenarios featuring single bubble rising in viscous fluid media are examined. The ULPH simulation results are validated against experimental data, the Level-set (LS) method and Lattice Boltzmann Method (LBM) results. Furthermore, results of three calculations are presented, including dynamic characterization of two horizontal coaxial bubbles, three vertical coaxial bubbles and a single bubble in the presence of an obstacle. The results indicate that the established ULPH multiphase flow model is effective in accurately simulating dynamic characteristics of rising bubbles under various conditions, affirming its applicability in engineering analyses.</p>\",\"PeriodicalId\":11696,\"journal\":{\"name\":\"Engineering with Computers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering with Computers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00366-024-02032-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-02032-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

许多工程领域经常会遇到气泡上升现象,其应用也多种多样。全面了解气泡上升现象对这些工程应用至关重要。在本研究中,我们采用开发的更新拉格朗日粒子流体力学(ULPH)多相流模型来研究静态液体中气泡流动的动态行为,包括气泡上升、变形、破碎和凝聚。首先,对多相界面的计算域尺寸和流体/气泡密度比对气泡动力学的影响进行了全面的数值研究。随后,研究了粘性流体介质中单个气泡上升的各种情况。ULPH 模拟结果与实验数据、水平集(LS)方法和晶格玻尔兹曼方法(LBM)结果进行了验证。此外,还展示了三个计算结果,包括两个水平同轴气泡、三个垂直同轴气泡和一个有障碍物存在的单个气泡的动态特性。结果表明,已建立的 ULPH 多相流模型能有效准确地模拟上升气泡在各种条件下的动态特性,肯定了其在工程分析中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Updated Lagrangian particle hydrodynamics (ULPH) simulations of underwater bubble motions in three-dimensional space

Rising bubbles are often encountered in many engineering fields and have diverse applications. A thorough understanding of bubble rising phenomenon is crucial in these engineering applications. In this study, we employ the developed updated Lagrangian particle hydrodynamics (ULPH) multiphase flow model to investigate the dynamic behavior of bubble flow in quiescent liquids, including bubble rise, deformation, fragmentation, and coalescence. First, a comprehensive numerical study of the influences of computational domain dimensions and fluid/bubble density ratios at the multiphase interface on bubble dynamics is conducted. Subsequently, a variety of scenarios featuring single bubble rising in viscous fluid media are examined. The ULPH simulation results are validated against experimental data, the Level-set (LS) method and Lattice Boltzmann Method (LBM) results. Furthermore, results of three calculations are presented, including dynamic characterization of two horizontal coaxial bubbles, three vertical coaxial bubbles and a single bubble in the presence of an obstacle. The results indicate that the established ULPH multiphase flow model is effective in accurately simulating dynamic characteristics of rising bubbles under various conditions, affirming its applicability in engineering analyses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering with Computers
Engineering with Computers 工程技术-工程:机械
CiteScore
16.50
自引率
2.30%
发文量
203
审稿时长
9 months
期刊介绍: Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.
期刊最新文献
A universal material model subroutine for soft matter systems A second-generation URANS model (STRUCT- $$\epsilon $$ ) applied to a generic side mirror and its impact on sound generation Multiphysics discovery with moving boundaries using Ensemble SINDy and peridynamic differential operator Adaptive Kriging-based method with learning function allocation scheme and hybrid convergence criterion for efficient structural reliability analysis A new kernel-based approach for solving general fractional (integro)-differential-algebraic equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1