大块温石棉到纳米温石棉脱羟基的相变和动力学新见解

IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Physics and Chemistry of Minerals Pub Date : 2024-07-23 DOI:10.1007/s00269-024-01288-3
Jifa Long, Wentao Liu, Ningbo Zhang, Hanting Zhang, Qi Xiao, Suping Huang
{"title":"大块温石棉到纳米温石棉脱羟基的相变和动力学新见解","authors":"Jifa Long,&nbsp;Wentao Liu,&nbsp;Ningbo Zhang,&nbsp;Hanting Zhang,&nbsp;Qi Xiao,&nbsp;Suping Huang","doi":"10.1007/s00269-024-01288-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the self-made chrysotile fiber membrane (CFM) and raw chrysotile fiber (CF) were calcined in air from 500 to 800 °C. The XRD pattern of CFM showed that the diffraction peak of chrysotile weakened when the temperature was from room temperature to 550 °C, and CFM had a shorter amorphous interval at 600–700 °C. While, no amorphous phase appeared in CF during calcination, and forsterite begined to appear at 650 °C. SEM images showed that CFM could still maintain the integrity of the network structure at 600–800 °C, while CF gradually melted into coarse fiber bundles with the increase of calcination temperature, and sintering traces appeared. After that,the kinetics of the dehydroxylation of chrysotile in CFM and CF was studied. The dehydroxylation of CFM is a one-step reaction, the calculated activation energy is 243.33 kJ mol<sup>−1</sup>, which conforms to the two-dimensional ‘Valensi’ model with mechanism function G(α) = (1−α)ln(1−α) + α. The dehydroxylation of CF is divided into two stages, the activation energy are 222.87 kJ mol<sup>−1</sup> and 316.04 kJ mol<sup>−1</sup>. The first stage of CF conforms to two-dimensional ‘Jander’ model (n = 2) with mechanism function G(α) = [1−(1−α)<sup>1/2</sup>]<sup>2</sup>, the second stage of CF conforms to the random nucleation and subsequent growth ‘Avrami-Erofeev’ model (n = 3/2) with mechanism function G(α) = [−ln(1−α)]<sup>2/3</sup><i>.</i></p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New insight into the phase transition and kinetics of the dehydroxylation of bulk-to-nano chrysotile\",\"authors\":\"Jifa Long,&nbsp;Wentao Liu,&nbsp;Ningbo Zhang,&nbsp;Hanting Zhang,&nbsp;Qi Xiao,&nbsp;Suping Huang\",\"doi\":\"10.1007/s00269-024-01288-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, the self-made chrysotile fiber membrane (CFM) and raw chrysotile fiber (CF) were calcined in air from 500 to 800 °C. The XRD pattern of CFM showed that the diffraction peak of chrysotile weakened when the temperature was from room temperature to 550 °C, and CFM had a shorter amorphous interval at 600–700 °C. While, no amorphous phase appeared in CF during calcination, and forsterite begined to appear at 650 °C. SEM images showed that CFM could still maintain the integrity of the network structure at 600–800 °C, while CF gradually melted into coarse fiber bundles with the increase of calcination temperature, and sintering traces appeared. After that,the kinetics of the dehydroxylation of chrysotile in CFM and CF was studied. The dehydroxylation of CFM is a one-step reaction, the calculated activation energy is 243.33 kJ mol<sup>−1</sup>, which conforms to the two-dimensional ‘Valensi’ model with mechanism function G(α) = (1−α)ln(1−α) + α. The dehydroxylation of CF is divided into two stages, the activation energy are 222.87 kJ mol<sup>−1</sup> and 316.04 kJ mol<sup>−1</sup>. The first stage of CF conforms to two-dimensional ‘Jander’ model (n = 2) with mechanism function G(α) = [1−(1−α)<sup>1/2</sup>]<sup>2</sup>, the second stage of CF conforms to the random nucleation and subsequent growth ‘Avrami-Erofeev’ model (n = 3/2) with mechanism function G(α) = [−ln(1−α)]<sup>2/3</sup><i>.</i></p></div>\",\"PeriodicalId\":20132,\"journal\":{\"name\":\"Physics and Chemistry of Minerals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00269-024-01288-3\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-024-01288-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,自制的温石棉纤维膜(CFM)和温石棉原纤维(CF)在空气中进行了500至800 °C的煅烧。CFM 的 XRD 图谱显示,当温度从室温升至 550 ℃ 时,温石棉的衍射峰减弱,在 600-700 ℃ 时,CFM 的无定形间隔缩短。而 CF 在煅烧过程中没有出现无定形相,在 650 ℃ 时开始出现绿柱石。扫描电镜图像显示,CFM 在 600-800 ℃ 时仍能保持网络结构的完整性,而 CF 则随着煅烧温度的升高逐渐熔化成粗纤维束,并出现烧结痕迹。随后,研究了温石棉在 CFM 和 CF 中的脱羟动力学。CFM 的脱羟基反应为一步反应,计算的活化能为 243.33 kJ mol-1,符合二维 "Valensi "模型,机理函数为 G(α) = (1-α)ln(1-α) + α。CF 的脱羟基反应分为两个阶段,活化能分别为 222.87 kJ mol-1 和 316.04 kJ mol-1。CF 的第一阶段符合二维 "扬德 "模型(n = 2),机理函数 G(α) = [1-(1-α)1/2]2 ;CF 的第二阶段符合随机成核和后续生长的 "阿夫拉米-埃罗费耶夫 "模型(n = 3/2),机理函数 G(α) = [-ln(1-α)]2/3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New insight into the phase transition and kinetics of the dehydroxylation of bulk-to-nano chrysotile

In this work, the self-made chrysotile fiber membrane (CFM) and raw chrysotile fiber (CF) were calcined in air from 500 to 800 °C. The XRD pattern of CFM showed that the diffraction peak of chrysotile weakened when the temperature was from room temperature to 550 °C, and CFM had a shorter amorphous interval at 600–700 °C. While, no amorphous phase appeared in CF during calcination, and forsterite begined to appear at 650 °C. SEM images showed that CFM could still maintain the integrity of the network structure at 600–800 °C, while CF gradually melted into coarse fiber bundles with the increase of calcination temperature, and sintering traces appeared. After that,the kinetics of the dehydroxylation of chrysotile in CFM and CF was studied. The dehydroxylation of CFM is a one-step reaction, the calculated activation energy is 243.33 kJ mol−1, which conforms to the two-dimensional ‘Valensi’ model with mechanism function G(α) = (1−α)ln(1−α) + α. The dehydroxylation of CF is divided into two stages, the activation energy are 222.87 kJ mol−1 and 316.04 kJ mol−1. The first stage of CF conforms to two-dimensional ‘Jander’ model (n = 2) with mechanism function G(α) = [1−(1−α)1/2]2, the second stage of CF conforms to the random nucleation and subsequent growth ‘Avrami-Erofeev’ model (n = 3/2) with mechanism function G(α) = [−ln(1−α)]2/3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Chemistry of Minerals
Physics and Chemistry of Minerals 地学-材料科学:综合
CiteScore
2.90
自引率
14.30%
发文量
43
审稿时长
3 months
期刊介绍: Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are: -Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.) -General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.) -Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.) -Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.) -Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems -Electron microscopy in support of physical and chemical studies -Computational methods in the study of the structure and properties of minerals -Mineral surfaces (experimental methods, structure and properties)
期刊最新文献
Interaction of platinum with antimony-bearing compounds in NaF fluids at 800 °C and 200 MPA High-pressure synthesis of rhenium carbide Re3C under megabar compression High pressure and high temperature Brillouin scattering measurements of pyrope single crystals using flexible CO2 laser heating systems Thermodynamics of the α-FeOOH (goethite)-ScOOH solid solution High pressure behavior of K-cymrite (KAlSi3O8·H2O) crystal structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1