对数字双胞胎进行验证和确认,以加强当前 SORA 预测小型不合作飞行物空对空碰撞危险的做法

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent & Robotic Systems Pub Date : 2024-07-24 DOI:10.1007/s10846-024-02136-w
Santiago Matalonga, Julie Black, James Riordan
{"title":"对数字双胞胎进行验证和确认,以加强当前 SORA 预测小型不合作飞行物空对空碰撞危险的做法","authors":"Santiago Matalonga, Julie Black, James Riordan","doi":"10.1007/s10846-024-02136-w","DOIUrl":null,"url":null,"abstract":"<p>Future autonomous Unmanned Aerial Vehicles (UAV) missions will take place in highly cluttered urban environments. As a result, the UAV must be able to autonomously evaluate risks and react to unforeseen hazards. The current regulatory framework for missions implements SORA guidelines for hazard detection, but its application to air-to-air collision is limited. This research defined a rigorous verification and validation framework (V&amp;V) for digital twins for use in future autonomous UAV missions. The researchers designed a sentry mission for a UAV to evaluate its capacity to detect small uncooperative flying objects. A digital twin of the DJI M300 vision system was built using a game engine and a V&amp;V framework was developed to assure the quality of results in both virtual and real-world scenarios. The results showed the capability of the digital twin to identify vulnerabilities and worst-case scenarios in UAV mission operations, and how it can assist remote pilots in identifying air-to-air collision hazards. Furthermore, the probability of air-to-air collision was calculated for three sentry patterns, and the results were validated in the field. This research demonstrated the capability to identify vulnerabilities and worst-case scenarios in UAV mission operations. We present how the digital twin of an operational theatre can be exploited to assist remote pilots with the identification of air-to-air collision hazards of small uncooperative objects. Furthermore, we discuss how these results can be used to enhance current SORA-based risk assessment practices.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verification and Validation for a Digital Twin for Augmenting Current SORA Practices with Air-to-Air Collision Hazards Prediction from Small Uncooperative Flying Objects\",\"authors\":\"Santiago Matalonga, Julie Black, James Riordan\",\"doi\":\"10.1007/s10846-024-02136-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Future autonomous Unmanned Aerial Vehicles (UAV) missions will take place in highly cluttered urban environments. As a result, the UAV must be able to autonomously evaluate risks and react to unforeseen hazards. The current regulatory framework for missions implements SORA guidelines for hazard detection, but its application to air-to-air collision is limited. This research defined a rigorous verification and validation framework (V&amp;V) for digital twins for use in future autonomous UAV missions. The researchers designed a sentry mission for a UAV to evaluate its capacity to detect small uncooperative flying objects. A digital twin of the DJI M300 vision system was built using a game engine and a V&amp;V framework was developed to assure the quality of results in both virtual and real-world scenarios. The results showed the capability of the digital twin to identify vulnerabilities and worst-case scenarios in UAV mission operations, and how it can assist remote pilots in identifying air-to-air collision hazards. Furthermore, the probability of air-to-air collision was calculated for three sentry patterns, and the results were validated in the field. This research demonstrated the capability to identify vulnerabilities and worst-case scenarios in UAV mission operations. We present how the digital twin of an operational theatre can be exploited to assist remote pilots with the identification of air-to-air collision hazards of small uncooperative objects. Furthermore, we discuss how these results can be used to enhance current SORA-based risk assessment practices.</p>\",\"PeriodicalId\":54794,\"journal\":{\"name\":\"Journal of Intelligent & Robotic Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10846-024-02136-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02136-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

未来的自主无人机(UAV)任务将在高度拥挤的城市环境中进行。因此,无人飞行器必须能够自主评估风险,并对不可预见的危险做出反应。目前的任务监管框架执行了 SORA 危险检测准则,但其在空对空碰撞方面的应用有限。这项研究为数字孪生确定了一个严格的验证和确认框架(V&V),以用于未来的自主无人机任务。研究人员为无人机设计了一个哨兵任务,以评估其探测小型不合作飞行物的能力。研究人员使用游戏引擎构建了大疆 M300 视觉系统的数字孪生系统,并开发了一个 V&V 框架,以确保虚拟和现实场景中的结果质量。结果表明,数字孪生系统能够识别无人机任务操作中的漏洞和最坏情况,并能帮助远程飞行员识别空空碰撞危险。此外,还计算了三种哨兵模式的空对空碰撞概率,并对结果进行了实地验证。这项研究展示了识别无人机任务操作中的漏洞和最坏情况的能力。我们介绍了如何利用战区的数字孪生系统来协助远程飞行员识别小型不合作物体的空对空碰撞危险。此外,我们还讨论了如何利用这些结果来加强当前基于 SORA 的风险评估实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Verification and Validation for a Digital Twin for Augmenting Current SORA Practices with Air-to-Air Collision Hazards Prediction from Small Uncooperative Flying Objects

Future autonomous Unmanned Aerial Vehicles (UAV) missions will take place in highly cluttered urban environments. As a result, the UAV must be able to autonomously evaluate risks and react to unforeseen hazards. The current regulatory framework for missions implements SORA guidelines for hazard detection, but its application to air-to-air collision is limited. This research defined a rigorous verification and validation framework (V&V) for digital twins for use in future autonomous UAV missions. The researchers designed a sentry mission for a UAV to evaluate its capacity to detect small uncooperative flying objects. A digital twin of the DJI M300 vision system was built using a game engine and a V&V framework was developed to assure the quality of results in both virtual and real-world scenarios. The results showed the capability of the digital twin to identify vulnerabilities and worst-case scenarios in UAV mission operations, and how it can assist remote pilots in identifying air-to-air collision hazards. Furthermore, the probability of air-to-air collision was calculated for three sentry patterns, and the results were validated in the field. This research demonstrated the capability to identify vulnerabilities and worst-case scenarios in UAV mission operations. We present how the digital twin of an operational theatre can be exploited to assist remote pilots with the identification of air-to-air collision hazards of small uncooperative objects. Furthermore, we discuss how these results can be used to enhance current SORA-based risk assessment practices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent & Robotic Systems
Journal of Intelligent & Robotic Systems 工程技术-机器人学
CiteScore
7.00
自引率
9.10%
发文量
219
审稿时长
6 months
期刊介绍: The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization. On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc. On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).
期刊最新文献
UAV Routing for Enhancing the Performance of a Classifier-in-the-loop DFT-VSLAM: A Dynamic Optical Flow Tracking VSLAM Method Design and Development of a Robust Control Platform for a 3-Finger Robotic Gripper Using EMG-Derived Hand Muscle Signals in NI LabVIEW Neural Network-based Adaptive Finite-time Control for 2-DOF Helicopter Systems with Prescribed Performance and Input Saturation Six-Degree-of-Freedom Pose Estimation Method for Multi-Source Feature Points Based on Fully Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1