Cecilia Scoccia, Barnaba Ubezio, Giacomo Palmieri, Michael Rathmair, Michael Hofbaur
{"title":"基于视觉的机器人机械手避障策略的实验评估:离线轨迹规划与在线运动控制","authors":"Cecilia Scoccia, Barnaba Ubezio, Giacomo Palmieri, Michael Rathmair, Michael Hofbaur","doi":"10.1007/s10846-024-02146-8","DOIUrl":null,"url":null,"abstract":"<p>Human-Robot Interaction is an increasingly important topic in both research and industry fields. Since human safety must be always guaranteed and accidental contact with the operator avoided, it is necessary to investigate real-time obstacle avoidance strategies. The transfer from simulation environments, where algorithms are tested, to the real world is challenging from different points of view, e.g., the continuous tracking of the obstacle and the configuration of different manipulators. In this paper, the authors describe the implementation of a collision avoidance strategy based on the potential field method for off-line trajectory planning and on-line motion control, paired with the Motion Capture system Optitrack PrimeX 22 for obstacle tracking. Several experiments show the performance of the proposed strategy in the case of a fixed and dynamic obstacle, disturbing the robot’s trajectory from multiple directions. Two different avoidance modalities are adapted and tested for both standard and redundant robot manipulators. The results show the possibility of safely implementing the proposed avoidance strategy on real systems.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"194 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Assessment of a Vision-Based Obstacle Avoidance Strategy for Robot Manipulators: Off-line Trajectory Planning and On-line Motion Control\",\"authors\":\"Cecilia Scoccia, Barnaba Ubezio, Giacomo Palmieri, Michael Rathmair, Michael Hofbaur\",\"doi\":\"10.1007/s10846-024-02146-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human-Robot Interaction is an increasingly important topic in both research and industry fields. Since human safety must be always guaranteed and accidental contact with the operator avoided, it is necessary to investigate real-time obstacle avoidance strategies. The transfer from simulation environments, where algorithms are tested, to the real world is challenging from different points of view, e.g., the continuous tracking of the obstacle and the configuration of different manipulators. In this paper, the authors describe the implementation of a collision avoidance strategy based on the potential field method for off-line trajectory planning and on-line motion control, paired with the Motion Capture system Optitrack PrimeX 22 for obstacle tracking. Several experiments show the performance of the proposed strategy in the case of a fixed and dynamic obstacle, disturbing the robot’s trajectory from multiple directions. Two different avoidance modalities are adapted and tested for both standard and redundant robot manipulators. The results show the possibility of safely implementing the proposed avoidance strategy on real systems.</p>\",\"PeriodicalId\":54794,\"journal\":{\"name\":\"Journal of Intelligent & Robotic Systems\",\"volume\":\"194 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10846-024-02146-8\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02146-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Experimental Assessment of a Vision-Based Obstacle Avoidance Strategy for Robot Manipulators: Off-line Trajectory Planning and On-line Motion Control
Human-Robot Interaction is an increasingly important topic in both research and industry fields. Since human safety must be always guaranteed and accidental contact with the operator avoided, it is necessary to investigate real-time obstacle avoidance strategies. The transfer from simulation environments, where algorithms are tested, to the real world is challenging from different points of view, e.g., the continuous tracking of the obstacle and the configuration of different manipulators. In this paper, the authors describe the implementation of a collision avoidance strategy based on the potential field method for off-line trajectory planning and on-line motion control, paired with the Motion Capture system Optitrack PrimeX 22 for obstacle tracking. Several experiments show the performance of the proposed strategy in the case of a fixed and dynamic obstacle, disturbing the robot’s trajectory from multiple directions. Two different avoidance modalities are adapted and tested for both standard and redundant robot manipulators. The results show the possibility of safely implementing the proposed avoidance strategy on real systems.
期刊介绍:
The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization.
On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc.
On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).