{"title":"估计玉米 Y-EPSPS 基因在拟南芥转基因品系抗草甘膦能力中的作用","authors":"Fan-Hao Wang, Chen Zhang, Chun-Lai Wang, Xiao-Tong Wei, Si-Yan Liu, Shu-Yan Guan, Yi-Yong Ma","doi":"10.1007/s10725-024-01188-0","DOIUrl":null,"url":null,"abstract":"<p>The herbicide glyphosate inhibits the key enzyme 5-enolpyruvate shikimate-3-phosphate synthase (EPSPS) in the aromatic amino acid synthesis pathway of plants. This study aims to explore the <i>Y-EPSPS</i> gene derived from maize through codon optimization and validate its glyphosate resistance in Arabidopsis Thaliana. Germination rates of seeds under different glyphosate concentrations revealed that seeds overexpressing the <i>Y-EPSPS</i> gene exhibited higher germination rates compared to wild-type seeds. DAB and NBT staining methods were used to measure ROS levels in Arabidopsis plants under 0.8 mM glyphosate stress, showing that plants overexpressing <i>Y-EPSPS</i> had lower ROS levels compared to wild-type plants. Soluble sugar and malondialdehyde (MDA) content were higher in <i>Y-EPSPS</i> overexpressing plants, whereas MDA content was lower, indicating a potential stress response to glyphosate. Chlorophyll content and FV/FW ratio were higher in plants overexpressing <i>Y-EPSPS</i> compared to wild-type plants, suggesting reduced susceptibility to glyphosate. Enzyme activity and gene expression analysis further demonstrated significant increases in POD, SOD, and CAT enzyme activities in <i>Y-EPSPS</i> overexpressing plants compared to wild-type, while SD enzyme activity decreased significantly. Expression levels of ROS detoxification-related genes (<i>AtCAT3</i> and <i>AtSOD1</i>) and stress defense-related genes (<i>AtLTP3</i>, <i>AtSOS1</i>, and <i>DQSD</i>) were also elevated to varying degrees in <i>Y-EPSPS</i> overexpressing plants compared to wild-type plants. These results indicate that the optimized <i>Y-EPSPS</i> gene confers certain resistance to glyphosate.</p>","PeriodicalId":20412,"journal":{"name":"Plant Growth Regulation","volume":"42 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating the role of maize Y-EPSPS gene in glyphosate resistance in Arabidopsis transgenic lines\",\"authors\":\"Fan-Hao Wang, Chen Zhang, Chun-Lai Wang, Xiao-Tong Wei, Si-Yan Liu, Shu-Yan Guan, Yi-Yong Ma\",\"doi\":\"10.1007/s10725-024-01188-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The herbicide glyphosate inhibits the key enzyme 5-enolpyruvate shikimate-3-phosphate synthase (EPSPS) in the aromatic amino acid synthesis pathway of plants. This study aims to explore the <i>Y-EPSPS</i> gene derived from maize through codon optimization and validate its glyphosate resistance in Arabidopsis Thaliana. Germination rates of seeds under different glyphosate concentrations revealed that seeds overexpressing the <i>Y-EPSPS</i> gene exhibited higher germination rates compared to wild-type seeds. DAB and NBT staining methods were used to measure ROS levels in Arabidopsis plants under 0.8 mM glyphosate stress, showing that plants overexpressing <i>Y-EPSPS</i> had lower ROS levels compared to wild-type plants. Soluble sugar and malondialdehyde (MDA) content were higher in <i>Y-EPSPS</i> overexpressing plants, whereas MDA content was lower, indicating a potential stress response to glyphosate. Chlorophyll content and FV/FW ratio were higher in plants overexpressing <i>Y-EPSPS</i> compared to wild-type plants, suggesting reduced susceptibility to glyphosate. Enzyme activity and gene expression analysis further demonstrated significant increases in POD, SOD, and CAT enzyme activities in <i>Y-EPSPS</i> overexpressing plants compared to wild-type, while SD enzyme activity decreased significantly. Expression levels of ROS detoxification-related genes (<i>AtCAT3</i> and <i>AtSOD1</i>) and stress defense-related genes (<i>AtLTP3</i>, <i>AtSOS1</i>, and <i>DQSD</i>) were also elevated to varying degrees in <i>Y-EPSPS</i> overexpressing plants compared to wild-type plants. These results indicate that the optimized <i>Y-EPSPS</i> gene confers certain resistance to glyphosate.</p>\",\"PeriodicalId\":20412,\"journal\":{\"name\":\"Plant Growth Regulation\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Growth Regulation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10725-024-01188-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10725-024-01188-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Estimating the role of maize Y-EPSPS gene in glyphosate resistance in Arabidopsis transgenic lines
The herbicide glyphosate inhibits the key enzyme 5-enolpyruvate shikimate-3-phosphate synthase (EPSPS) in the aromatic amino acid synthesis pathway of plants. This study aims to explore the Y-EPSPS gene derived from maize through codon optimization and validate its glyphosate resistance in Arabidopsis Thaliana. Germination rates of seeds under different glyphosate concentrations revealed that seeds overexpressing the Y-EPSPS gene exhibited higher germination rates compared to wild-type seeds. DAB and NBT staining methods were used to measure ROS levels in Arabidopsis plants under 0.8 mM glyphosate stress, showing that plants overexpressing Y-EPSPS had lower ROS levels compared to wild-type plants. Soluble sugar and malondialdehyde (MDA) content were higher in Y-EPSPS overexpressing plants, whereas MDA content was lower, indicating a potential stress response to glyphosate. Chlorophyll content and FV/FW ratio were higher in plants overexpressing Y-EPSPS compared to wild-type plants, suggesting reduced susceptibility to glyphosate. Enzyme activity and gene expression analysis further demonstrated significant increases in POD, SOD, and CAT enzyme activities in Y-EPSPS overexpressing plants compared to wild-type, while SD enzyme activity decreased significantly. Expression levels of ROS detoxification-related genes (AtCAT3 and AtSOD1) and stress defense-related genes (AtLTP3, AtSOS1, and DQSD) were also elevated to varying degrees in Y-EPSPS overexpressing plants compared to wild-type plants. These results indicate that the optimized Y-EPSPS gene confers certain resistance to glyphosate.
期刊介绍:
Plant Growth Regulation is an international journal publishing original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research using hormonal, physiological, environmental, genetical, biophysical, developmental or molecular approaches to the study of plant growth regulation.
Emphasis is placed on papers presenting the results of original research. Occasional reviews on important topics will also be welcome. All contributions must be in English.