用于装配和磨削应用的具有可变刚度手腕的混合顺应式控制器

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Robotics and Autonomous Systems Pub Date : 2024-07-18 DOI:10.1016/j.robot.2024.104756
Du Xu , Haijie Mo , Jian Yi , Long Huang , Lairong Yin
{"title":"用于装配和磨削应用的具有可变刚度手腕的混合顺应式控制器","authors":"Du Xu ,&nbsp;Haijie Mo ,&nbsp;Jian Yi ,&nbsp;Long Huang ,&nbsp;Lairong Yin","doi":"10.1016/j.robot.2024.104756","DOIUrl":null,"url":null,"abstract":"<div><p>This research presents a novel robot system that combines active and passive components to enhance compliance and dependability. The system is based on a continuous variable stiffness wrist. A wrist was created that met the requirements and a combination of active and passive control methods was suggested to insert and regulate forces effectively. The control strategy is based on the Cosserat rod model, with the fundamental concept being calculating the position and orientation of the component using data on the force exerted during contact between the parts and the stiffness of the contact between the shaft and hole components. This process converts the hard assembly into a flexible contact. Compliance is monitored via force and vision sensors, which allows for the shaft-hole assembly operation to be carried out even with attitude alignment problems, resulting in a notable decrease in the precision needed for component alignment. Initially, the camera supplies the first positional data of the shaft component for the robotic system. In addition, the performance of the wrist with variable stiffness is evaluated in terms of stiffness. Additionally, the calculation of relative deformation between components is examined using contact force information. Moreover, a robust active/passive hybrid insertion control technique, which relies on contact force, is proposed. Finally, the shaft-hole assembly task substantiates the necessity for contact force monitoring in the insertion assembly process. This control technique has demonstrated its efficacy in ensuring passive-compliant assembly performance. Furthermore, the variable stiffness wrist has been employed in robotic grinding for surfaces with curved contours to validate its effectiveness.</p></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"180 ","pages":"Article 104756"},"PeriodicalIF":4.3000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid compliant control with variable-stiffness wrist for assembly and grinding application\",\"authors\":\"Du Xu ,&nbsp;Haijie Mo ,&nbsp;Jian Yi ,&nbsp;Long Huang ,&nbsp;Lairong Yin\",\"doi\":\"10.1016/j.robot.2024.104756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research presents a novel robot system that combines active and passive components to enhance compliance and dependability. The system is based on a continuous variable stiffness wrist. A wrist was created that met the requirements and a combination of active and passive control methods was suggested to insert and regulate forces effectively. The control strategy is based on the Cosserat rod model, with the fundamental concept being calculating the position and orientation of the component using data on the force exerted during contact between the parts and the stiffness of the contact between the shaft and hole components. This process converts the hard assembly into a flexible contact. Compliance is monitored via force and vision sensors, which allows for the shaft-hole assembly operation to be carried out even with attitude alignment problems, resulting in a notable decrease in the precision needed for component alignment. Initially, the camera supplies the first positional data of the shaft component for the robotic system. In addition, the performance of the wrist with variable stiffness is evaluated in terms of stiffness. Additionally, the calculation of relative deformation between components is examined using contact force information. Moreover, a robust active/passive hybrid insertion control technique, which relies on contact force, is proposed. Finally, the shaft-hole assembly task substantiates the necessity for contact force monitoring in the insertion assembly process. This control technique has demonstrated its efficacy in ensuring passive-compliant assembly performance. Furthermore, the variable stiffness wrist has been employed in robotic grinding for surfaces with curved contours to validate its effectiveness.</p></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":\"180 \",\"pages\":\"Article 104756\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921889024001404\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024001404","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种新型机器人系统,该系统结合了主动和被动组件,以提高顺应性和可靠性。该系统以连续可变刚度手腕为基础。我们创建了一个符合要求的手腕,并提出了一种主动和被动相结合的控制方法,以有效地插入和调节力。控制策略以 Cosserat 杆模型为基础,其基本概念是利用部件间接触时施加的力以及轴和孔部件间接触的刚度数据来计算部件的位置和方向。这一过程将硬组件转换为柔性接触。通过力传感器和视觉传感器对顺从性进行监控,即使在存在姿态对准问题的情况下也能进行轴孔装配操作,从而显著降低了组件对准所需的精度。最初,照相机为机器人系统提供轴组件的第一个位置数据。此外,还根据刚度评估了具有可变刚度的手腕的性能。此外,还利用接触力信息检查了部件间相对变形的计算。此外,还提出了一种依赖接触力的稳健主动/被动混合插入控制技术。最后,轴孔装配任务证明了在插入装配过程中进行接触力监测的必要性。这种控制技术在确保被动式装配性能方面证明了其有效性。此外,可变刚度手腕还被用于机器人打磨具有弯曲轮廓的表面,以验证其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid compliant control with variable-stiffness wrist for assembly and grinding application

This research presents a novel robot system that combines active and passive components to enhance compliance and dependability. The system is based on a continuous variable stiffness wrist. A wrist was created that met the requirements and a combination of active and passive control methods was suggested to insert and regulate forces effectively. The control strategy is based on the Cosserat rod model, with the fundamental concept being calculating the position and orientation of the component using data on the force exerted during contact between the parts and the stiffness of the contact between the shaft and hole components. This process converts the hard assembly into a flexible contact. Compliance is monitored via force and vision sensors, which allows for the shaft-hole assembly operation to be carried out even with attitude alignment problems, resulting in a notable decrease in the precision needed for component alignment. Initially, the camera supplies the first positional data of the shaft component for the robotic system. In addition, the performance of the wrist with variable stiffness is evaluated in terms of stiffness. Additionally, the calculation of relative deformation between components is examined using contact force information. Moreover, a robust active/passive hybrid insertion control technique, which relies on contact force, is proposed. Finally, the shaft-hole assembly task substantiates the necessity for contact force monitoring in the insertion assembly process. This control technique has demonstrated its efficacy in ensuring passive-compliant assembly performance. Furthermore, the variable stiffness wrist has been employed in robotic grinding for surfaces with curved contours to validate its effectiveness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
期刊最新文献
MOVRO2: Loosely coupled monocular visual radar odometry using factor graph optimization Learning temporal maps of dynamics for mobile robots Towards zero-shot cross-agent transfer learning via latent-space universal notice network Delta- and Kalman-filter designs for multi-sensor pose estimation on spherical mobile mapping systems Safe tracking control for free-flying space robots via control barrier functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1