揭示复杂性:复杂实验数据分析中的奇异值分解

Judith F. Stein, Aviad Frydman, Richard Berkovits
{"title":"揭示复杂性:复杂实验数据分析中的奇异值分解","authors":"Judith F. Stein, Aviad Frydman, Richard Berkovits","doi":"arxiv-2407.16267","DOIUrl":null,"url":null,"abstract":"Analyzing complex experimental data with multiple parameters is challenging.\nWe propose using Singular Value Decomposition (SVD) as an effective solution.\nThis method, demonstrated through real experimental data analysis, surpasses\nconventional approaches in understanding complex physics data. Singular values\nand vectors distinguish and highlight various physical mechanisms and scales,\nrevealing previously challenging elements. SVD emerges as a powerful tool for\nnavigating complex experimental landscapes, showing promise for diverse\nexperimental measurements.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling Complexity: Singular Value Decomposition in Complex Experimental Data Analysis\",\"authors\":\"Judith F. Stein, Aviad Frydman, Richard Berkovits\",\"doi\":\"arxiv-2407.16267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyzing complex experimental data with multiple parameters is challenging.\\nWe propose using Singular Value Decomposition (SVD) as an effective solution.\\nThis method, demonstrated through real experimental data analysis, surpasses\\nconventional approaches in understanding complex physics data. Singular values\\nand vectors distinguish and highlight various physical mechanisms and scales,\\nrevealing previously challenging elements. SVD emerges as a powerful tool for\\nnavigating complex experimental landscapes, showing promise for diverse\\nexperimental measurements.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.16267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析具有多个参数的复杂实验数据具有挑战性。我们建议使用奇异值分解(SVD)作为有效的解决方案。通过实际实验数据分析证明,这种方法在理解复杂物理数据方面超越了传统方法。奇异值和向量区分并突出了各种物理机制和尺度,揭示了以前具有挑战性的元素。SVD 是导航复杂实验景观的强大工具,为各种实验测量带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unraveling Complexity: Singular Value Decomposition in Complex Experimental Data Analysis
Analyzing complex experimental data with multiple parameters is challenging. We propose using Singular Value Decomposition (SVD) as an effective solution. This method, demonstrated through real experimental data analysis, surpasses conventional approaches in understanding complex physics data. Singular values and vectors distinguish and highlight various physical mechanisms and scales, revealing previously challenging elements. SVD emerges as a powerful tool for navigating complex experimental landscapes, showing promise for diverse experimental measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1