{"title":"利用水动力空化和臭氧混合高级氧化工艺提高盐酸环丙沙星的降解能力","authors":"Narendra Bodawar, Rohit Shetty, Sanjay Kamble, Prashant Kulkarni","doi":"10.1002/ceat.202300469","DOIUrl":null,"url":null,"abstract":"<p>The degradation of ciprofloxacin hydrochloride (CFX), an extensively utilized antibiotic for bacterial infections, has been studied through the application of advanced oxidation processes (AOPs) including hydrodynamic cavitation (HC), ozonation (O<sub>3</sub>), the Fenton reaction, chemical oxidation, and hybrid AOPs such as HC/O<sub>3</sub> and Fenton/O<sub>3</sub>. Among these, the hybrid combination of HC/O<sub>3</sub> demonstrated the highest CFX degradation of 99.82 % within 180 min having an initial concentration of 1000 ppm. The optimization of the HC/O<sub>3</sub> process was conducted by varying parameters including initial concentration, pH, ozone (O<sub>3</sub>) gas flowrate, and temperature. Throughout the degradation process, CFX underwent intermediate formation, which gradually degraded over time.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Degradation of Ciprofloxacin Hydrochloride Using Hybrid Advanced Oxidation Process of Hydrodynamic Cavitation and Ozonation\",\"authors\":\"Narendra Bodawar, Rohit Shetty, Sanjay Kamble, Prashant Kulkarni\",\"doi\":\"10.1002/ceat.202300469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The degradation of ciprofloxacin hydrochloride (CFX), an extensively utilized antibiotic for bacterial infections, has been studied through the application of advanced oxidation processes (AOPs) including hydrodynamic cavitation (HC), ozonation (O<sub>3</sub>), the Fenton reaction, chemical oxidation, and hybrid AOPs such as HC/O<sub>3</sub> and Fenton/O<sub>3</sub>. Among these, the hybrid combination of HC/O<sub>3</sub> demonstrated the highest CFX degradation of 99.82 % within 180 min having an initial concentration of 1000 ppm. The optimization of the HC/O<sub>3</sub> process was conducted by varying parameters including initial concentration, pH, ozone (O<sub>3</sub>) gas flowrate, and temperature. Throughout the degradation process, CFX underwent intermediate formation, which gradually degraded over time.</p>\",\"PeriodicalId\":10083,\"journal\":{\"name\":\"Chemical Engineering & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300469\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300469","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Enhanced Degradation of Ciprofloxacin Hydrochloride Using Hybrid Advanced Oxidation Process of Hydrodynamic Cavitation and Ozonation
The degradation of ciprofloxacin hydrochloride (CFX), an extensively utilized antibiotic for bacterial infections, has been studied through the application of advanced oxidation processes (AOPs) including hydrodynamic cavitation (HC), ozonation (O3), the Fenton reaction, chemical oxidation, and hybrid AOPs such as HC/O3 and Fenton/O3. Among these, the hybrid combination of HC/O3 demonstrated the highest CFX degradation of 99.82 % within 180 min having an initial concentration of 1000 ppm. The optimization of the HC/O3 process was conducted by varying parameters including initial concentration, pH, ozone (O3) gas flowrate, and temperature. Throughout the degradation process, CFX underwent intermediate formation, which gradually degraded over time.
期刊介绍:
This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering.
Chemical Engineering & Technology is:
Competent with contributions written and refereed by outstanding professionals from around the world.
Essential because it is an international forum for the exchange of ideas and experiences.
Topical because its articles treat the very latest developments in the field.