ECAP 加工 ZK60 镁合金的显微组织、纹理和力学性能的演变

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Metals and Materials International Pub Date : 2024-07-23 DOI:10.1007/s12540-024-01730-9
Iraj Khoubrou, Bahram Nami, Seyyed Mehdi Miresmaeili, Milad Yazdani
{"title":"ECAP 加工 ZK60 镁合金的显微组织、纹理和力学性能的演变","authors":"Iraj Khoubrou, Bahram Nami, Seyyed Mehdi Miresmaeili, Milad Yazdani","doi":"10.1007/s12540-024-01730-9","DOIUrl":null,"url":null,"abstract":"<p>In this work, the influence of equal channel angular pressing (ECAP) on the microstructure, texture, and mechanical properties of ZK60 Mg alloy was investigated. The deformation process by equal channel angular pressing has been performed at the three temperatures of 588, 628, and 668 K and different ECAP pass numbers up to 4. The microstructural evolution was investigated using an optical microscope (OM), scanning electron microscope (SEM) equipped with an EDS detector, and X-ray diffraction (XRD) analyses. After the ECAP process, the microstructure of the cast alloy with an average grain size of about 208 μm converted to the bimodal grain structure. The fractions of fine grains increase and their size decreases with the increasing ECAP pass number and the decreasing deformation processing temperature. The results show that the ECAP process improves the mechanical properties at room temperature and weakens them at high temperatures. In addition, enhancement of the deformation severity through increasing the number of ECAP passes and decreasing the ECAP temperature led to an increase in the hardness of the alloy at room temperature and a decrease in its creep resistance at high temperatures.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"63 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of Microstructure, Texture and Mechanical Properties of ECAP-Processed ZK60 Magnesium Alloy\",\"authors\":\"Iraj Khoubrou, Bahram Nami, Seyyed Mehdi Miresmaeili, Milad Yazdani\",\"doi\":\"10.1007/s12540-024-01730-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, the influence of equal channel angular pressing (ECAP) on the microstructure, texture, and mechanical properties of ZK60 Mg alloy was investigated. The deformation process by equal channel angular pressing has been performed at the three temperatures of 588, 628, and 668 K and different ECAP pass numbers up to 4. The microstructural evolution was investigated using an optical microscope (OM), scanning electron microscope (SEM) equipped with an EDS detector, and X-ray diffraction (XRD) analyses. After the ECAP process, the microstructure of the cast alloy with an average grain size of about 208 μm converted to the bimodal grain structure. The fractions of fine grains increase and their size decreases with the increasing ECAP pass number and the decreasing deformation processing temperature. The results show that the ECAP process improves the mechanical properties at room temperature and weakens them at high temperatures. In addition, enhancement of the deformation severity through increasing the number of ECAP passes and decreasing the ECAP temperature led to an increase in the hardness of the alloy at room temperature and a decrease in its creep resistance at high temperatures.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":703,\"journal\":{\"name\":\"Metals and Materials International\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals and Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12540-024-01730-9\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12540-024-01730-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了等沟道角压(ECAP)对 ZK60 镁合金的微观结构、纹理和机械性能的影响。在 588、628 和 668 K 三种温度下以及不同的 ECAP 次数(最多 4 次)下进行了等沟角压制变形过程。使用光学显微镜(OM)、配备 EDS 检测器的扫描电子显微镜(SEM)和 X 射线衍射(XRD)分析研究了微观结构的演变。经过 ECAP 处理后,平均晶粒大小约为 208 μm 的铸造合金的微观结构转变为双峰晶粒结构。随着 ECAP 道次的增加和变形加工温度的降低,细晶粒的比例增加,尺寸减小。结果表明,ECAP 工艺改善了室温下的机械性能,并削弱了高温下的机械性能。此外,通过增加 ECAP 次数和降低 ECAP 温度来提高变形严重程度,导致合金在室温下的硬度增加,而在高温下的抗蠕变性降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolution of Microstructure, Texture and Mechanical Properties of ECAP-Processed ZK60 Magnesium Alloy

In this work, the influence of equal channel angular pressing (ECAP) on the microstructure, texture, and mechanical properties of ZK60 Mg alloy was investigated. The deformation process by equal channel angular pressing has been performed at the three temperatures of 588, 628, and 668 K and different ECAP pass numbers up to 4. The microstructural evolution was investigated using an optical microscope (OM), scanning electron microscope (SEM) equipped with an EDS detector, and X-ray diffraction (XRD) analyses. After the ECAP process, the microstructure of the cast alloy with an average grain size of about 208 μm converted to the bimodal grain structure. The fractions of fine grains increase and their size decreases with the increasing ECAP pass number and the decreasing deformation processing temperature. The results show that the ECAP process improves the mechanical properties at room temperature and weakens them at high temperatures. In addition, enhancement of the deformation severity through increasing the number of ECAP passes and decreasing the ECAP temperature led to an increase in the hardness of the alloy at room temperature and a decrease in its creep resistance at high temperatures.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
期刊最新文献
Microstructural and Textural Evolution of a Zr-Sn-Nb-Fe Alloy Tube During Cold Pilger Rolling Effect of Annealing Treatment on the Heterogeneous Microstructure and Properties of Cold-Rolled FeCoCrNiMn High-Entropy Alloy Microstructure and Mechanical Properties of Al-Cu-Mn Alloy Mechanically Alloyed with 5 wt% Zr After Multi-Directional Forging Fabrication of Cu Particles with Porous Surface and Enhanced Sinter-Bondability between Cu Finishes by Physically In Situ Formation of Cu Nanoparticles Using Them Correction: Research Status and Prospects of Ultrasonic Vibration-Assisted Joining Technology for Difficult-to-Weld High-Strength Alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1