Yang Wang , Laidi Zou , Chenchen Lou , Xuedong Geng , Shixiu Zhang , Xuewen Chen , Yan Zhang , Dandan Huang , Aizhen Liang
{"title":"秸秆留茬免耕通过改变东北地区土壤物理性状和团粒结构影响玉米根系生长形态:为期十年的田间试验","authors":"Yang Wang , Laidi Zou , Chenchen Lou , Xuedong Geng , Shixiu Zhang , Xuewen Chen , Yan Zhang , Dandan Huang , Aizhen Liang","doi":"10.1016/j.geodrs.2024.e00840","DOIUrl":null,"url":null,"abstract":"<div><p>Conservation tillage, particularly the implementation of no-tillage and straw retention (NTS), has been proposed as an effective practice to enhance soil structure and improve soil quality in Northeast China. However, the impact of NTS on maize (<em>Zea mays</em> L.) root growth morphology and the influence of tillage practices on maize root morphology through soil physical properties and structure in Northeast China remain understudied. To address this knowledge gap, a continuous ten-year experiment was conducted to assess the effects of NTS on soil physical properties, aggregate structure, maize root morphology, and their interconnections. Our findings demonstrate that the NTS treatment significantly increased soil water content and soil bulk density at depths of 0–5 cm (1.6%) and 5–10 cm (2.2%), while decreasing soil porosity at depths of 0–5 cm (1.4%) and 5–10 cm (2.0%) compared to conventional tillage (CT). Additionally, NTS resulted in a higher content of soil macro-aggregates (> 0.25 mm) and improved soil aggregate stability compared to CT. Notably, root length, root surface area, root volume, and root biomass in the NTS treatment were 6.04%, 22.15%, 10.04%, and 9.29% higher than those in CT, respectively. However, there was no significant difference in root diameter between the two tillage practices. These results reveal that NTS induces alterations in soil physical properties, aggregate size distribution and aggregate stability, thereby affecting maize root growth morphology.</p></div>","PeriodicalId":56001,"journal":{"name":"Geoderma Regional","volume":"38 ","pages":"Article e00840"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"No-tillage with straw retention influenced maize root growth morphology by changing soil physical properties and aggregate structure in Northeast China: A ten-year field experiment\",\"authors\":\"Yang Wang , Laidi Zou , Chenchen Lou , Xuedong Geng , Shixiu Zhang , Xuewen Chen , Yan Zhang , Dandan Huang , Aizhen Liang\",\"doi\":\"10.1016/j.geodrs.2024.e00840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conservation tillage, particularly the implementation of no-tillage and straw retention (NTS), has been proposed as an effective practice to enhance soil structure and improve soil quality in Northeast China. However, the impact of NTS on maize (<em>Zea mays</em> L.) root growth morphology and the influence of tillage practices on maize root morphology through soil physical properties and structure in Northeast China remain understudied. To address this knowledge gap, a continuous ten-year experiment was conducted to assess the effects of NTS on soil physical properties, aggregate structure, maize root morphology, and their interconnections. Our findings demonstrate that the NTS treatment significantly increased soil water content and soil bulk density at depths of 0–5 cm (1.6%) and 5–10 cm (2.2%), while decreasing soil porosity at depths of 0–5 cm (1.4%) and 5–10 cm (2.0%) compared to conventional tillage (CT). Additionally, NTS resulted in a higher content of soil macro-aggregates (> 0.25 mm) and improved soil aggregate stability compared to CT. Notably, root length, root surface area, root volume, and root biomass in the NTS treatment were 6.04%, 22.15%, 10.04%, and 9.29% higher than those in CT, respectively. However, there was no significant difference in root diameter between the two tillage practices. These results reveal that NTS induces alterations in soil physical properties, aggregate size distribution and aggregate stability, thereby affecting maize root growth morphology.</p></div>\",\"PeriodicalId\":56001,\"journal\":{\"name\":\"Geoderma Regional\",\"volume\":\"38 \",\"pages\":\"Article e00840\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoderma Regional\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352009424000877\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma Regional","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352009424000877","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
No-tillage with straw retention influenced maize root growth morphology by changing soil physical properties and aggregate structure in Northeast China: A ten-year field experiment
Conservation tillage, particularly the implementation of no-tillage and straw retention (NTS), has been proposed as an effective practice to enhance soil structure and improve soil quality in Northeast China. However, the impact of NTS on maize (Zea mays L.) root growth morphology and the influence of tillage practices on maize root morphology through soil physical properties and structure in Northeast China remain understudied. To address this knowledge gap, a continuous ten-year experiment was conducted to assess the effects of NTS on soil physical properties, aggregate structure, maize root morphology, and their interconnections. Our findings demonstrate that the NTS treatment significantly increased soil water content and soil bulk density at depths of 0–5 cm (1.6%) and 5–10 cm (2.2%), while decreasing soil porosity at depths of 0–5 cm (1.4%) and 5–10 cm (2.0%) compared to conventional tillage (CT). Additionally, NTS resulted in a higher content of soil macro-aggregates (> 0.25 mm) and improved soil aggregate stability compared to CT. Notably, root length, root surface area, root volume, and root biomass in the NTS treatment were 6.04%, 22.15%, 10.04%, and 9.29% higher than those in CT, respectively. However, there was no significant difference in root diameter between the two tillage practices. These results reveal that NTS induces alterations in soil physical properties, aggregate size distribution and aggregate stability, thereby affecting maize root growth morphology.
期刊介绍:
Global issues require studies and solutions on national and regional levels. Geoderma Regional focuses on studies that increase understanding and advance our scientific knowledge of soils in all regions of the world. The journal embraces every aspect of soil science and welcomes reviews of regional progress.