{"title":"具有血管紧张素 I 转化酶和二肽基肽酶-IV 双重抑制活性的块茎薤白肽的特性分析","authors":"Nhung Thi Phuong Nong, Chia-Hui Lee, Jue-Liang Hsu","doi":"10.1007/s00044-024-03284-2","DOIUrl":null,"url":null,"abstract":"<div><p>Two peptides with dual functionality, namely LLPSY and NAPALVY, exhibit inhibitory effects on both angiotensin-I-converting enzyme (ACE) and dipeptidyl peptidase-IV (DPP-IV), were successfully identified from the hydrolysates of Chinese chive seed (<i>Allium tuberosum</i> Rottl.). Peptide isolation involved reversed-phase chromatography, and peptide sequences were characterized through liquid chromatography-tandem mass spectrometry analysis and de novo sequencing. Notably, the Lineweaver-Burk plot analysis revealed that LLPSY (IC<sub>50</sub>: 15.66 ± 1.11 µM) acted in a non-competitive manner, whereas NAPALVY (IC<sub>50</sub>: 3.42 ± 0.79 µM) exhibited competitive inhibition, potently inhibiting ACE. Their stability tests against ACE further revealed that LLPSY acted as a real substrate, while NAPALVY functioned as a true inhibitor of ACE. In terms of DPP-IV inhibition, LLPSY (IC<sub>50</sub>: 2.48 ± 0.10 mM) was identified as a competitive inhibitor, whereas NAPALVY (IC<sub>50</sub>: 7.63 ± 0.52 mM) displayed noncompetitive inhibition. Both peptides exhibited true inhibitory effects on DPP-IV. Docking simulations provided insights into peptide-enzyme interactions. These novel <i>Allium tuberosum Rottl.</i>-derived peptides hold promise for controlling blood pressure and blood glucose.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"33 10","pages":"1838 - 1853"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Allium tuberosum Rottl. peptides with dual inhibitory activities against angiotensin I converting enzyme and dipeptidyl peptidase-IV\",\"authors\":\"Nhung Thi Phuong Nong, Chia-Hui Lee, Jue-Liang Hsu\",\"doi\":\"10.1007/s00044-024-03284-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two peptides with dual functionality, namely LLPSY and NAPALVY, exhibit inhibitory effects on both angiotensin-I-converting enzyme (ACE) and dipeptidyl peptidase-IV (DPP-IV), were successfully identified from the hydrolysates of Chinese chive seed (<i>Allium tuberosum</i> Rottl.). Peptide isolation involved reversed-phase chromatography, and peptide sequences were characterized through liquid chromatography-tandem mass spectrometry analysis and de novo sequencing. Notably, the Lineweaver-Burk plot analysis revealed that LLPSY (IC<sub>50</sub>: 15.66 ± 1.11 µM) acted in a non-competitive manner, whereas NAPALVY (IC<sub>50</sub>: 3.42 ± 0.79 µM) exhibited competitive inhibition, potently inhibiting ACE. Their stability tests against ACE further revealed that LLPSY acted as a real substrate, while NAPALVY functioned as a true inhibitor of ACE. In terms of DPP-IV inhibition, LLPSY (IC<sub>50</sub>: 2.48 ± 0.10 mM) was identified as a competitive inhibitor, whereas NAPALVY (IC<sub>50</sub>: 7.63 ± 0.52 mM) displayed noncompetitive inhibition. Both peptides exhibited true inhibitory effects on DPP-IV. Docking simulations provided insights into peptide-enzyme interactions. These novel <i>Allium tuberosum Rottl.</i>-derived peptides hold promise for controlling blood pressure and blood glucose.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":699,\"journal\":{\"name\":\"Medicinal Chemistry Research\",\"volume\":\"33 10\",\"pages\":\"1838 - 1853\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicinal Chemistry Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00044-024-03284-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00044-024-03284-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Characterization of Allium tuberosum Rottl. peptides with dual inhibitory activities against angiotensin I converting enzyme and dipeptidyl peptidase-IV
Two peptides with dual functionality, namely LLPSY and NAPALVY, exhibit inhibitory effects on both angiotensin-I-converting enzyme (ACE) and dipeptidyl peptidase-IV (DPP-IV), were successfully identified from the hydrolysates of Chinese chive seed (Allium tuberosum Rottl.). Peptide isolation involved reversed-phase chromatography, and peptide sequences were characterized through liquid chromatography-tandem mass spectrometry analysis and de novo sequencing. Notably, the Lineweaver-Burk plot analysis revealed that LLPSY (IC50: 15.66 ± 1.11 µM) acted in a non-competitive manner, whereas NAPALVY (IC50: 3.42 ± 0.79 µM) exhibited competitive inhibition, potently inhibiting ACE. Their stability tests against ACE further revealed that LLPSY acted as a real substrate, while NAPALVY functioned as a true inhibitor of ACE. In terms of DPP-IV inhibition, LLPSY (IC50: 2.48 ± 0.10 mM) was identified as a competitive inhibitor, whereas NAPALVY (IC50: 7.63 ± 0.52 mM) displayed noncompetitive inhibition. Both peptides exhibited true inhibitory effects on DPP-IV. Docking simulations provided insights into peptide-enzyme interactions. These novel Allium tuberosum Rottl.-derived peptides hold promise for controlling blood pressure and blood glucose.
期刊介绍:
Medicinal Chemistry Research (MCRE) publishes papers on a wide range of topics, favoring research with significant, new, and up-to-date information. Although the journal has a demanding peer review process, MCRE still boasts rapid publication, due in part, to the length of the submissions. The journal publishes significant research on various topics, many of which emphasize the structure-activity relationships of molecular biology.