基于随机超平面的等级及其在多元波特曼检验中的应用

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2024-06-28 DOI:10.1016/j.jmva.2024.105344
Šárka Hudecová , Miroslav Šiman
{"title":"基于随机超平面的等级及其在多元波特曼检验中的应用","authors":"Šárka Hudecová ,&nbsp;Miroslav Šiman","doi":"10.1016/j.jmva.2024.105344","DOIUrl":null,"url":null,"abstract":"<div><p>The article proposes and justifies an optimal rank-based portmanteau test of multivariate elliptical strict white noise against multivariate serial dependence. It is based on new stochastic hyperplane-based ranks that are simpler and easier to compute than other usable hyperplane-based competitors and still share with them many good properties such as their distribution-free nature, affine invariance, efficiency, robustness and weak moment assumptions. The finite-sample performance of the portmanteau test is illustrated empirically in a small Monte Carlo simulation study.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic hyperplane-based ranks and their use in multivariate portmanteau tests\",\"authors\":\"Šárka Hudecová ,&nbsp;Miroslav Šiman\",\"doi\":\"10.1016/j.jmva.2024.105344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The article proposes and justifies an optimal rank-based portmanteau test of multivariate elliptical strict white noise against multivariate serial dependence. It is based on new stochastic hyperplane-based ranks that are simpler and easier to compute than other usable hyperplane-based competitors and still share with them many good properties such as their distribution-free nature, affine invariance, efficiency, robustness and weak moment assumptions. The finite-sample performance of the portmanteau test is illustrated empirically in a small Monte Carlo simulation study.</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000514\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000514","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

文章针对多变量序列依赖性,提出并论证了基于秩的多变量椭圆严格白噪声的最优波特曼测试。它基于新的基于随机超平面的秩,比其他可用的基于超平面的竞争者更简单、更容易计算,并且与它们共享许多良好的特性,如无分布性、仿射不变性、效率、稳健性和弱矩假设。波特曼检验的有限样本性能在一项小型蒙特卡罗模拟研究中得到了实证说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stochastic hyperplane-based ranks and their use in multivariate portmanteau tests

The article proposes and justifies an optimal rank-based portmanteau test of multivariate elliptical strict white noise against multivariate serial dependence. It is based on new stochastic hyperplane-based ranks that are simpler and easier to compute than other usable hyperplane-based competitors and still share with them many good properties such as their distribution-free nature, affine invariance, efficiency, robustness and weak moment assumptions. The finite-sample performance of the portmanteau test is illustrated empirically in a small Monte Carlo simulation study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Covariance parameter estimation of Gaussian processes with approximated functional inputs PDE-regularised spatial quantile regression Diagnostic checking of periodic vector autoregressive time series models with dependent errors A conditional distribution function-based measure for independence and K-sample tests in multivariate data On the exact region determined by Spearman’s ρ and Blest’s measure of rank correlation ν for bivariate extreme-value copulas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1