{"title":"利用大孔树脂优化分离和纯化芍药甘草煎剂","authors":"Yao Luo, Wentao Wu, Rui Gao, Yongxue Guo","doi":"10.1016/j.jchromb.2024.124251","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, high-performance liquid chromatography was used to determine four components of Shaoyao Gancao Decoction (SGD), and the effect of purification was evaluated using fingerprints, similarity analysis and cell experiments. An effective method for isolation and purification of SGD was established. The adsorption/desorption properties of SGD were evaluated using resin screening, isothermal analysis, adsorption kinetics, and dynamic adsorption–desorption experiments. It was shown that the Langmuir equation fitted the isotherm data well and that a pseudo-second-order model accurately described kinetic adsorption on AB-8 resin. Analysis of thermodynamic parameters showed that the adsorption process was exothermic. Under the optimal process conditions, the concentrations of albiflorin, paeoniflorin, liquiritin and ammonium glycyrrhizinate in the product were 73.05, 134.04, 45.04 and 75.00 <!--> <!-->mg/g, respectively. The yields of the four components were 71.89 %–86.19 %. Cell experiments showed that the purified SGD retained anti-inflammatory activity. This research lays the foundation for the separation and purification of SGD and subsequent preparation research.</p></div>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1244 ","pages":"Article 124251"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized isolation and purification of Shaoyao Gancao decoction using macroporous resin\",\"authors\":\"Yao Luo, Wentao Wu, Rui Gao, Yongxue Guo\",\"doi\":\"10.1016/j.jchromb.2024.124251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, high-performance liquid chromatography was used to determine four components of Shaoyao Gancao Decoction (SGD), and the effect of purification was evaluated using fingerprints, similarity analysis and cell experiments. An effective method for isolation and purification of SGD was established. The adsorption/desorption properties of SGD were evaluated using resin screening, isothermal analysis, adsorption kinetics, and dynamic adsorption–desorption experiments. It was shown that the Langmuir equation fitted the isotherm data well and that a pseudo-second-order model accurately described kinetic adsorption on AB-8 resin. Analysis of thermodynamic parameters showed that the adsorption process was exothermic. Under the optimal process conditions, the concentrations of albiflorin, paeoniflorin, liquiritin and ammonium glycyrrhizinate in the product were 73.05, 134.04, 45.04 and 75.00 <!--> <!-->mg/g, respectively. The yields of the four components were 71.89 %–86.19 %. Cell experiments showed that the purified SGD retained anti-inflammatory activity. This research lays the foundation for the separation and purification of SGD and subsequent preparation research.</p></div>\",\"PeriodicalId\":348,\"journal\":{\"name\":\"Journal of Chromatography B\",\"volume\":\"1244 \",\"pages\":\"Article 124251\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570023224002605\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570023224002605","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Optimized isolation and purification of Shaoyao Gancao decoction using macroporous resin
In this study, high-performance liquid chromatography was used to determine four components of Shaoyao Gancao Decoction (SGD), and the effect of purification was evaluated using fingerprints, similarity analysis and cell experiments. An effective method for isolation and purification of SGD was established. The adsorption/desorption properties of SGD were evaluated using resin screening, isothermal analysis, adsorption kinetics, and dynamic adsorption–desorption experiments. It was shown that the Langmuir equation fitted the isotherm data well and that a pseudo-second-order model accurately described kinetic adsorption on AB-8 resin. Analysis of thermodynamic parameters showed that the adsorption process was exothermic. Under the optimal process conditions, the concentrations of albiflorin, paeoniflorin, liquiritin and ammonium glycyrrhizinate in the product were 73.05, 134.04, 45.04 and 75.00 mg/g, respectively. The yields of the four components were 71.89 %–86.19 %. Cell experiments showed that the purified SGD retained anti-inflammatory activity. This research lays the foundation for the separation and purification of SGD and subsequent preparation research.
期刊介绍:
The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis.
Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches.
Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.