Chunfeng Li, Karim Soliman, Fei Yin, Jin Wei, Feng Shi
{"title":"NxtSPR:基于三核的多核架构的中继专用无死锁最短路径路由算法","authors":"Chunfeng Li, Karim Soliman, Fei Yin, Jin Wei, Feng Shi","doi":"10.1016/j.parco.2024.103094","DOIUrl":null,"url":null,"abstract":"<div><p>Deadlock-free routing is a significant challenge in Network-on-Chip (NoC) design as it affects the network’s latency, power consumption, and load balance, impacting the performance of multi-processor systems-on-chip. However, achieving deadlock-free routing will routinely result in expensive overhead as previous solutions either sacrifice performance or power efficiency to proactively avoid deadlocks or impose high hardware complexity to resolve deadlocks when they occur reactively. Utilizing the various characteristics of NoC to implement deadlock-free routing can be significantly more cost-effective with less impact on performance. This paper proposes a relay routing algorithm (NxtSPR) with a shortest path property and a deadlock prevention mechanism based on a synchronized Hamiltonian ring. The proposal is based on an in-depth study of the characteristics of a Triplet-Based many-core Architecture (TriBA) NoC. We establish various important topology-related theories and perform a formal verification (proof-based) for them. By utilizing the critical subgraph and apex of TriBA, NxtSPR can pre-calculate downstream nodes forwarding ports for packets by using a concise judgment strategy. This significantly reduces the computational overhead required for data transmission while optimizing the pipeline design of routers to decrease packet transmission latency and power consumption compared to other TriBA routing algorithms. We group the data transmissions according to the levels of maximum Hamiltonian edges a packet will traverse during its transmission life cycle. Independent data transmissions between groups can avoid mutual interference and resource competition, eliminating potential deadlocks. Gem5 simulation results show that, under the synthetic traffic patterns, compared to the representative (Table) and up-to-date (SPR4T) routing algorithms, NxtSPR achieves a 20.19%, 14.76%, and 5.54%, 4.66% reduction in average packet latency and per-packet power consumption, respectively. Moreover, it has an average of 18.50% and 4.34% improvement in throughput, as compared to them. PARSEC benchmark results show that NxtSPR reduces application runtime by up to a maximum of 22.30% and 12.82% compared to Table and SPR4T, and running the same applications with TriBA results in a maximum runtime reduction of 10.77% compared to 2D-Mesh.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"121 ","pages":"Article 103094"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NxtSPR: A deadlock-free shortest path routing dedicated to relaying for Triplet-Based many-core Architecture\",\"authors\":\"Chunfeng Li, Karim Soliman, Fei Yin, Jin Wei, Feng Shi\",\"doi\":\"10.1016/j.parco.2024.103094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deadlock-free routing is a significant challenge in Network-on-Chip (NoC) design as it affects the network’s latency, power consumption, and load balance, impacting the performance of multi-processor systems-on-chip. However, achieving deadlock-free routing will routinely result in expensive overhead as previous solutions either sacrifice performance or power efficiency to proactively avoid deadlocks or impose high hardware complexity to resolve deadlocks when they occur reactively. Utilizing the various characteristics of NoC to implement deadlock-free routing can be significantly more cost-effective with less impact on performance. This paper proposes a relay routing algorithm (NxtSPR) with a shortest path property and a deadlock prevention mechanism based on a synchronized Hamiltonian ring. The proposal is based on an in-depth study of the characteristics of a Triplet-Based many-core Architecture (TriBA) NoC. We establish various important topology-related theories and perform a formal verification (proof-based) for them. By utilizing the critical subgraph and apex of TriBA, NxtSPR can pre-calculate downstream nodes forwarding ports for packets by using a concise judgment strategy. This significantly reduces the computational overhead required for data transmission while optimizing the pipeline design of routers to decrease packet transmission latency and power consumption compared to other TriBA routing algorithms. We group the data transmissions according to the levels of maximum Hamiltonian edges a packet will traverse during its transmission life cycle. Independent data transmissions between groups can avoid mutual interference and resource competition, eliminating potential deadlocks. Gem5 simulation results show that, under the synthetic traffic patterns, compared to the representative (Table) and up-to-date (SPR4T) routing algorithms, NxtSPR achieves a 20.19%, 14.76%, and 5.54%, 4.66% reduction in average packet latency and per-packet power consumption, respectively. Moreover, it has an average of 18.50% and 4.34% improvement in throughput, as compared to them. PARSEC benchmark results show that NxtSPR reduces application runtime by up to a maximum of 22.30% and 12.82% compared to Table and SPR4T, and running the same applications with TriBA results in a maximum runtime reduction of 10.77% compared to 2D-Mesh.</p></div>\",\"PeriodicalId\":54642,\"journal\":{\"name\":\"Parallel Computing\",\"volume\":\"121 \",\"pages\":\"Article 103094\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167819124000322\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819124000322","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
NxtSPR: A deadlock-free shortest path routing dedicated to relaying for Triplet-Based many-core Architecture
Deadlock-free routing is a significant challenge in Network-on-Chip (NoC) design as it affects the network’s latency, power consumption, and load balance, impacting the performance of multi-processor systems-on-chip. However, achieving deadlock-free routing will routinely result in expensive overhead as previous solutions either sacrifice performance or power efficiency to proactively avoid deadlocks or impose high hardware complexity to resolve deadlocks when they occur reactively. Utilizing the various characteristics of NoC to implement deadlock-free routing can be significantly more cost-effective with less impact on performance. This paper proposes a relay routing algorithm (NxtSPR) with a shortest path property and a deadlock prevention mechanism based on a synchronized Hamiltonian ring. The proposal is based on an in-depth study of the characteristics of a Triplet-Based many-core Architecture (TriBA) NoC. We establish various important topology-related theories and perform a formal verification (proof-based) for them. By utilizing the critical subgraph and apex of TriBA, NxtSPR can pre-calculate downstream nodes forwarding ports for packets by using a concise judgment strategy. This significantly reduces the computational overhead required for data transmission while optimizing the pipeline design of routers to decrease packet transmission latency and power consumption compared to other TriBA routing algorithms. We group the data transmissions according to the levels of maximum Hamiltonian edges a packet will traverse during its transmission life cycle. Independent data transmissions between groups can avoid mutual interference and resource competition, eliminating potential deadlocks. Gem5 simulation results show that, under the synthetic traffic patterns, compared to the representative (Table) and up-to-date (SPR4T) routing algorithms, NxtSPR achieves a 20.19%, 14.76%, and 5.54%, 4.66% reduction in average packet latency and per-packet power consumption, respectively. Moreover, it has an average of 18.50% and 4.34% improvement in throughput, as compared to them. PARSEC benchmark results show that NxtSPR reduces application runtime by up to a maximum of 22.30% and 12.82% compared to Table and SPR4T, and running the same applications with TriBA results in a maximum runtime reduction of 10.77% compared to 2D-Mesh.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications