{"title":"用于原子重力测量的双态卡尔曼估计器","authors":"Bo-Nan Jiang","doi":"10.1140/epjd/s10053-024-00888-6","DOIUrl":null,"url":null,"abstract":"<p>We present a two-state Kalman estimator of gravity acceleration and evaluate its performance by numerical simulations and post-measurement demonstration with real-world atomic gravimetry. We show that the estimator-enhanced gravimetry significantly improves upon both short-term sensitivity and long-term stability. The estimates of gravity acceleration demonstrate a <span>\\(\\tau ^{1/2}\\)</span> feature well under white phase noise in the short term, and continue to improve as <span>\\(\\tau ^{-1/2}\\)</span> or improve faster as <span>\\(\\tau ^{-1}\\)</span> in the long term. This work validates the estimation of gravity acceleration as a key topic for future atomic gravimetry.</p><p>The performance of atomic gravimetry is limited by noises and other systematic or geophysical effects. By building a Kaman estimator rooted in the physics of atom interferometry, we realize significant improvements in both short-term sensitivity and long-term stability. This demonstration of estimator-enhanced gravimetry would be of great interest for static measurements of gravity, such as metrology or geophysics (Color online)</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A two-state Kalman estimator for atomic gravimetry\",\"authors\":\"Bo-Nan Jiang\",\"doi\":\"10.1140/epjd/s10053-024-00888-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a two-state Kalman estimator of gravity acceleration and evaluate its performance by numerical simulations and post-measurement demonstration with real-world atomic gravimetry. We show that the estimator-enhanced gravimetry significantly improves upon both short-term sensitivity and long-term stability. The estimates of gravity acceleration demonstrate a <span>\\\\(\\\\tau ^{1/2}\\\\)</span> feature well under white phase noise in the short term, and continue to improve as <span>\\\\(\\\\tau ^{-1/2}\\\\)</span> or improve faster as <span>\\\\(\\\\tau ^{-1}\\\\)</span> in the long term. This work validates the estimation of gravity acceleration as a key topic for future atomic gravimetry.</p><p>The performance of atomic gravimetry is limited by noises and other systematic or geophysical effects. By building a Kaman estimator rooted in the physics of atom interferometry, we realize significant improvements in both short-term sensitivity and long-term stability. This demonstration of estimator-enhanced gravimetry would be of great interest for static measurements of gravity, such as metrology or geophysics (Color online)</p>\",\"PeriodicalId\":789,\"journal\":{\"name\":\"The European Physical Journal D\",\"volume\":\"78 7\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal D\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjd/s10053-024-00888-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-024-00888-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
A two-state Kalman estimator for atomic gravimetry
We present a two-state Kalman estimator of gravity acceleration and evaluate its performance by numerical simulations and post-measurement demonstration with real-world atomic gravimetry. We show that the estimator-enhanced gravimetry significantly improves upon both short-term sensitivity and long-term stability. The estimates of gravity acceleration demonstrate a \(\tau ^{1/2}\) feature well under white phase noise in the short term, and continue to improve as \(\tau ^{-1/2}\) or improve faster as \(\tau ^{-1}\) in the long term. This work validates the estimation of gravity acceleration as a key topic for future atomic gravimetry.
The performance of atomic gravimetry is limited by noises and other systematic or geophysical effects. By building a Kaman estimator rooted in the physics of atom interferometry, we realize significant improvements in both short-term sensitivity and long-term stability. This demonstration of estimator-enhanced gravimetry would be of great interest for static measurements of gravity, such as metrology or geophysics (Color online)
期刊介绍:
The European Physical Journal D (EPJ D) presents new and original research results in:
Atomic Physics;
Molecular Physics and Chemical Physics;
Atomic and Molecular Collisions;
Clusters and Nanostructures;
Plasma Physics;
Laser Cooling and Quantum Gas;
Nonlinear Dynamics;
Optical Physics;
Quantum Optics and Quantum Information;
Ultraintense and Ultrashort Laser Fields.
The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.