具有人体组织声阻抗匹配聚醚醚酮的超声波驱动型高稳定植入式三电纳米发电机

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Materials Technologies Pub Date : 2024-07-25 DOI:10.1002/admt.202400317
Sera Jeon, Xiangchun Meng, Najaf Rubab, Dabin Kim, Hyeon Mo, Xiao Xiao, Min Jae Park, Daniel Sanghyun Cho, Seong Min Kim, Byung-Ok Choi, Sang-Woo Kim
{"title":"具有人体组织声阻抗匹配聚醚醚酮的超声波驱动型高稳定植入式三电纳米发电机","authors":"Sera Jeon,&nbsp;Xiangchun Meng,&nbsp;Najaf Rubab,&nbsp;Dabin Kim,&nbsp;Hyeon Mo,&nbsp;Xiao Xiao,&nbsp;Min Jae Park,&nbsp;Daniel Sanghyun Cho,&nbsp;Seong Min Kim,&nbsp;Byung-Ok Choi,&nbsp;Sang-Woo Kim","doi":"10.1002/admt.202400317","DOIUrl":null,"url":null,"abstract":"<p>Implantable electrical neurostimulators offer a promising avenue for treating neurological disorders. However, their dependency on a finite battery life limits their long-term utility. Emerging transcutaneous ultrasound-driven triboelectric nanogenerator (TENG) techniques provide solutions for converting external ultrasound waves into internal electricity. This study proposes an implantable ultrasound-driven TENG (IU-TENG) using polyether ether ketone (PEEK) for its exceptional stability inside a human body and acoustic impedance compatibility with human tissues. This IU-TENG remarkably surpasses traditional titanium-based encapsulation, resulting in a 99.94% efficiency in ultrasound transmission. In addition, PEEK contains numerous electron-donating functional groups, making it suitable for TENG applications, particularly as a positive triboelectric layer. The device exhibits robust voltage outputs, reaching up to 11.50 and 8.75 V in water and in vivo, respectively, under body-safe ultrasound intensities. Moreover, its ability to sustain a stable electrical output for over 300 min emphasizes the durability and mechanical resilience of PEEK. In vivo mouse models and ex vivo porcine tissue trials demonstrate the effectiveness of the IU-TENG in nerve stimulation, showing its potential in medical treatments, enhancing the functionality and longevity of implantable medical devices.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"9 21","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202400317","citationCount":"0","resultStr":"{\"title\":\"Ultrasound-Driven Highly Stable Implantable Triboelectric Nanogenerator with Human-Tissue Acoustic Impedance-Matched Polyether Ether Ketone\",\"authors\":\"Sera Jeon,&nbsp;Xiangchun Meng,&nbsp;Najaf Rubab,&nbsp;Dabin Kim,&nbsp;Hyeon Mo,&nbsp;Xiao Xiao,&nbsp;Min Jae Park,&nbsp;Daniel Sanghyun Cho,&nbsp;Seong Min Kim,&nbsp;Byung-Ok Choi,&nbsp;Sang-Woo Kim\",\"doi\":\"10.1002/admt.202400317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Implantable electrical neurostimulators offer a promising avenue for treating neurological disorders. However, their dependency on a finite battery life limits their long-term utility. Emerging transcutaneous ultrasound-driven triboelectric nanogenerator (TENG) techniques provide solutions for converting external ultrasound waves into internal electricity. This study proposes an implantable ultrasound-driven TENG (IU-TENG) using polyether ether ketone (PEEK) for its exceptional stability inside a human body and acoustic impedance compatibility with human tissues. This IU-TENG remarkably surpasses traditional titanium-based encapsulation, resulting in a 99.94% efficiency in ultrasound transmission. In addition, PEEK contains numerous electron-donating functional groups, making it suitable for TENG applications, particularly as a positive triboelectric layer. The device exhibits robust voltage outputs, reaching up to 11.50 and 8.75 V in water and in vivo, respectively, under body-safe ultrasound intensities. Moreover, its ability to sustain a stable electrical output for over 300 min emphasizes the durability and mechanical resilience of PEEK. In vivo mouse models and ex vivo porcine tissue trials demonstrate the effectiveness of the IU-TENG in nerve stimulation, showing its potential in medical treatments, enhancing the functionality and longevity of implantable medical devices.</p>\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":\"9 21\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202400317\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400317\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400317","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

植入式神经电刺激器为治疗神经系统疾病提供了一条前景广阔的途径。然而,它们对有限电池寿命的依赖限制了其长期效用。新兴的经皮超声波驱动三电纳米发电机(TENG)技术为将外部超声波转化为内部电力提供了解决方案。本研究提出了一种植入式超声波驱动 TENG(IU-TENG),采用聚醚醚酮(PEEK),因为它在人体内非常稳定,而且与人体组织具有声阻抗兼容性。这种 IU-TENG 显著超越了传统的钛基封装,超声波传输效率高达 99.94%。此外,聚醚醚酮含有大量电子捐献官能团,使其适合于 TENG 应用,特别是作为正三电层。该器件具有强大的电压输出,在水中和体内,在人体安全的超声强度下,电压输出分别高达 11.50 V 和 8.75 V。此外,它还能在超过 300 分钟的时间内保持稳定的电输出,这充分体现了聚醚醚酮的耐用性和机械韧性。体内小鼠模型和体外猪组织试验证明了 IU-TENG 在刺激神经方面的有效性,显示了其在医疗方面的潜力,并提高了植入式医疗设备的功能和寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultrasound-Driven Highly Stable Implantable Triboelectric Nanogenerator with Human-Tissue Acoustic Impedance-Matched Polyether Ether Ketone

Implantable electrical neurostimulators offer a promising avenue for treating neurological disorders. However, their dependency on a finite battery life limits their long-term utility. Emerging transcutaneous ultrasound-driven triboelectric nanogenerator (TENG) techniques provide solutions for converting external ultrasound waves into internal electricity. This study proposes an implantable ultrasound-driven TENG (IU-TENG) using polyether ether ketone (PEEK) for its exceptional stability inside a human body and acoustic impedance compatibility with human tissues. This IU-TENG remarkably surpasses traditional titanium-based encapsulation, resulting in a 99.94% efficiency in ultrasound transmission. In addition, PEEK contains numerous electron-donating functional groups, making it suitable for TENG applications, particularly as a positive triboelectric layer. The device exhibits robust voltage outputs, reaching up to 11.50 and 8.75 V in water and in vivo, respectively, under body-safe ultrasound intensities. Moreover, its ability to sustain a stable electrical output for over 300 min emphasizes the durability and mechanical resilience of PEEK. In vivo mouse models and ex vivo porcine tissue trials demonstrate the effectiveness of the IU-TENG in nerve stimulation, showing its potential in medical treatments, enhancing the functionality and longevity of implantable medical devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
期刊最新文献
A Nanomechanical Transducer for Remote Signal Transmission onto the Tympanic Membrane–Playing Music on a Different Drum (Adv. Mater. Technol. 22/2024) Dual-Material Aerosol Jet Printing of Magneto-Responsive Polymers with In-Process Tailorable Composition for Small-Scale Soft Robotics (Adv. Mater. Technol. 22/2024) Masthead: (Adv. Mater. Technol. 22/2024) Realizing the High Efficiency of Type-II Superlattice Infrared Sensors Integrated Wire-Grid Polarizer via Femtosecond Laser Polishing (Adv. Mater. Technol. 22/2024) High-Throughput Microfluidic 3D Outer Blood-Retinal Barrier Model in a 96-Well Format: Analysis of Cellular Interactions and Barrier Function in Retinal Health and Disease (Adv. Mater. Technol. 22/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1