剂量优化:开发肿瘤药物的监管视角。

IF 6.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Clinical Pharmacology & Therapeutics Pub Date : 2024-07-29 DOI:10.1002/cpt.3373
Atiqur Rahman, Mirat Shah, Stacy S. Shord
{"title":"剂量优化:开发肿瘤药物的监管视角。","authors":"Atiqur Rahman,&nbsp;Mirat Shah,&nbsp;Stacy S. Shord","doi":"10.1002/cpt.3373","DOIUrl":null,"url":null,"abstract":"<p>Optimized dosages provide a secure foundation for the development of well-tolerated and effective oncology drugs. Project Optimus, an initiative within the Oncology Center of Excellence, strives to reform the dosage optimization and dosage selection paradigm in oncology. This initiative stems from the availability of targeted drugs and from the demand for more tolerable dosages from patients, caregivers, and advocates. Reforming dosage optimization for oncology drugs requires a paradigm shift from the one employed for cytotoxic chemotherapy to one that understands and considers the unique attributes of targeted therapy, immunotherapy, and cellular therapy. Limited characterization of dosage during drug development may result in (1) patients not staying on a therapy long-term due to poor tolerability, (2) failure to establish positive benefit–risk in clinical trials for regulatory approval (3) withdrawal of drugs from the market (4) removal of indications of drugs from the market. Timely access to drugs is important for all patients with cancer, so it is vital to iteratively analyze all nonclinical and clinically relevant data at each stage of development and leverage quantitative approaches, innovative trial designs, and regulatory support to arrive at dosages with favorable benefit–risk. This review highlights the key challenges and opportunities to embracing this new paradigm and realizing the full potential of new oncology therapies.</p>","PeriodicalId":153,"journal":{"name":"Clinical Pharmacology & Therapeutics","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dosage Optimization: A Regulatory Perspective for Developing Oncology Drugs\",\"authors\":\"Atiqur Rahman,&nbsp;Mirat Shah,&nbsp;Stacy S. Shord\",\"doi\":\"10.1002/cpt.3373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Optimized dosages provide a secure foundation for the development of well-tolerated and effective oncology drugs. Project Optimus, an initiative within the Oncology Center of Excellence, strives to reform the dosage optimization and dosage selection paradigm in oncology. This initiative stems from the availability of targeted drugs and from the demand for more tolerable dosages from patients, caregivers, and advocates. Reforming dosage optimization for oncology drugs requires a paradigm shift from the one employed for cytotoxic chemotherapy to one that understands and considers the unique attributes of targeted therapy, immunotherapy, and cellular therapy. Limited characterization of dosage during drug development may result in (1) patients not staying on a therapy long-term due to poor tolerability, (2) failure to establish positive benefit–risk in clinical trials for regulatory approval (3) withdrawal of drugs from the market (4) removal of indications of drugs from the market. Timely access to drugs is important for all patients with cancer, so it is vital to iteratively analyze all nonclinical and clinically relevant data at each stage of development and leverage quantitative approaches, innovative trial designs, and regulatory support to arrive at dosages with favorable benefit–risk. This review highlights the key challenges and opportunities to embracing this new paradigm and realizing the full potential of new oncology therapies.</p>\",\"PeriodicalId\":153,\"journal\":{\"name\":\"Clinical Pharmacology & Therapeutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Pharmacology & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpt.3373\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacology & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpt.3373","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

优化剂量为开发耐受性良好、疗效显著的肿瘤药物奠定了坚实的基础。Optimus 项目是肿瘤学卓越中心(Oncology Center of Excellence)的一项倡议,旨在改革肿瘤学中的剂量优化和剂量选择模式。这一举措源于靶向药物的出现,以及患者、护理人员和倡导者对更可耐受剂量的需求。改革肿瘤药物的剂量优化需要从细胞毒性化疗的模式转变为了解和考虑靶向治疗、免疫治疗和细胞治疗独特属性的模式。药物开发过程中对剂量的有限描述可能会导致:(1)患者因耐受性差而无法长期接受治疗;(2)无法在临床试验中确定积极的效益-风险,以获得监管部门的批准;(3)药物退出市场;(4)药物的适应症被取消。及时获得药物对所有癌症患者都很重要,因此,在开发的每个阶段反复分析所有非临床和临床相关数据,并利用定量方法、创新试验设计和监管支持来确定具有良好效益-风险的剂量至关重要。本综述强调了采用这种新模式并充分发挥新型肿瘤疗法潜力所面临的主要挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dosage Optimization: A Regulatory Perspective for Developing Oncology Drugs

Optimized dosages provide a secure foundation for the development of well-tolerated and effective oncology drugs. Project Optimus, an initiative within the Oncology Center of Excellence, strives to reform the dosage optimization and dosage selection paradigm in oncology. This initiative stems from the availability of targeted drugs and from the demand for more tolerable dosages from patients, caregivers, and advocates. Reforming dosage optimization for oncology drugs requires a paradigm shift from the one employed for cytotoxic chemotherapy to one that understands and considers the unique attributes of targeted therapy, immunotherapy, and cellular therapy. Limited characterization of dosage during drug development may result in (1) patients not staying on a therapy long-term due to poor tolerability, (2) failure to establish positive benefit–risk in clinical trials for regulatory approval (3) withdrawal of drugs from the market (4) removal of indications of drugs from the market. Timely access to drugs is important for all patients with cancer, so it is vital to iteratively analyze all nonclinical and clinically relevant data at each stage of development and leverage quantitative approaches, innovative trial designs, and regulatory support to arrive at dosages with favorable benefit–risk. This review highlights the key challenges and opportunities to embracing this new paradigm and realizing the full potential of new oncology therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
7.50%
发文量
290
审稿时长
2 months
期刊介绍: Clinical Pharmacology & Therapeutics (CPT) is the authoritative cross-disciplinary journal in experimental and clinical medicine devoted to publishing advances in the nature, action, efficacy, and evaluation of therapeutics. CPT welcomes original Articles in the emerging areas of translational, predictive and personalized medicine; new therapeutic modalities including gene and cell therapies; pharmacogenomics, proteomics and metabolomics; bioinformation and applied systems biology complementing areas of pharmacokinetics and pharmacodynamics, human investigation and clinical trials, pharmacovigilence, pharmacoepidemiology, pharmacometrics, and population pharmacology.
期刊最新文献
Concordance Between Pharmaceuticals and Medical Devices Agency Review and Ministry of Health, Labour and Welfare Decision Among New Drug Applications in Japan. Effects of GLPG3970 on Sulfasalazine and Methotrexate Pharmacokinetics in Healthy Adults: Two Open-Label, Phase I, Drug-Drug Interaction Studies. Effects of Cimetidine and Dolutegravir on the Endogenous Drug-Drug Interaction Biomarkers for Organic Cation Transporter 2 and Multidrug and Toxin Extrusion Protein 1 in Healthy Volunteers. Correction to Beyond MABEL: An Integrative Approach to First in Human Dose Selection of Immunomodulators by the Health and Environmental Sciences Institute (HESI) Immuno-Safety Technical Committee (ITC). Real-World Effectiveness of All-Oral Direct-Acting Antivirals in Patients With Hepatitis C Virus-Related HCC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1