Emb Appyter 博士:利用嵌入向量进行药物发现的网络平台。

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Computational Chemistry Pub Date : 2024-07-29 DOI:10.1002/jcc.27469
Songhyeon Kim, Hyunsu Bong, Minji Jeon
{"title":"Emb Appyter 博士:利用嵌入向量进行药物发现的网络平台。","authors":"Songhyeon Kim,&nbsp;Hyunsu Bong,&nbsp;Minji Jeon","doi":"10.1002/jcc.27469","DOIUrl":null,"url":null,"abstract":"<p>Using embedding methods, compounds with similar properties will be closely located in latent space, and these embedding vectors can be used to find other compounds with similar properties based on the distance between compounds. However, they often require computational resources and programming skills. Here we develop Dr.Emb Appyter, a user-friendly web-based chemical compound search platform for drug discovery without any technical barriers. It uses embedding vectors to identify compounds similar to a given query in the embedding space. Dr.Emb Appyter provides various types of embedding methods, such as fingerprinting, SMILES, and transcriptional response-based methods, and embeds numerous compounds using them. The Faiss-based search system efficiently finds the closest compounds of query in the library. Additionally, Dr.Emb Appyter offers information on the top compounds; visualizes the results with 3D scatter plots, heatmaps, and UpSet plots; and analyses the results using a drug-set enrichment analysis. Dr.Emb Appyter is freely available at https://dremb.korea.ac.kr.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 31","pages":"2659-2665"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.27469","citationCount":"0","resultStr":"{\"title\":\"Dr.Emb Appyter: A web platform for drug discovery using embedding vectors\",\"authors\":\"Songhyeon Kim,&nbsp;Hyunsu Bong,&nbsp;Minji Jeon\",\"doi\":\"10.1002/jcc.27469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using embedding methods, compounds with similar properties will be closely located in latent space, and these embedding vectors can be used to find other compounds with similar properties based on the distance between compounds. However, they often require computational resources and programming skills. Here we develop Dr.Emb Appyter, a user-friendly web-based chemical compound search platform for drug discovery without any technical barriers. It uses embedding vectors to identify compounds similar to a given query in the embedding space. Dr.Emb Appyter provides various types of embedding methods, such as fingerprinting, SMILES, and transcriptional response-based methods, and embeds numerous compounds using them. The Faiss-based search system efficiently finds the closest compounds of query in the library. Additionally, Dr.Emb Appyter offers information on the top compounds; visualizes the results with 3D scatter plots, heatmaps, and UpSet plots; and analyses the results using a drug-set enrichment analysis. Dr.Emb Appyter is freely available at https://dremb.korea.ac.kr.</p>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"45 31\",\"pages\":\"2659-2665\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.27469\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27469\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27469","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

使用嵌入方法,具有相似性质的化合物将在潜在空间中紧密定位,这些嵌入向量可用于根据化合物之间的距离找到具有相似性质的其他化合物。然而,这些方法通常需要计算资源和编程技巧。在此,我们开发了 Dr.Emb Appyter,这是一个用户友好的基于网络的化合物搜索平台,用于药物发现,没有任何技术障碍。它使用嵌入向量来识别嵌入空间中与给定查询相似的化合物。Dr.Emb Appyter 提供各种类型的嵌入方法,如指纹法、SMILES 法和基于转录反应的方法,并利用这些方法嵌入了大量化合物。基于 Faiss 的搜索系统能在库中高效地找到与查询最接近的化合物。此外,Dr.Emb Appyter 还提供有关顶级化合物的信息;通过三维散点图、热图和 UpSet 图将结果可视化;并使用药物集富集分析对结果进行分析。Dr.Emb Appyter 可在 https://dremb.korea.ac.kr 免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dr.Emb Appyter: A web platform for drug discovery using embedding vectors

Using embedding methods, compounds with similar properties will be closely located in latent space, and these embedding vectors can be used to find other compounds with similar properties based on the distance between compounds. However, they often require computational resources and programming skills. Here we develop Dr.Emb Appyter, a user-friendly web-based chemical compound search platform for drug discovery without any technical barriers. It uses embedding vectors to identify compounds similar to a given query in the embedding space. Dr.Emb Appyter provides various types of embedding methods, such as fingerprinting, SMILES, and transcriptional response-based methods, and embeds numerous compounds using them. The Faiss-based search system efficiently finds the closest compounds of query in the library. Additionally, Dr.Emb Appyter offers information on the top compounds; visualizes the results with 3D scatter plots, heatmaps, and UpSet plots; and analyses the results using a drug-set enrichment analysis. Dr.Emb Appyter is freely available at https://dremb.korea.ac.kr.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
期刊最新文献
Issue Information DC24: A new density coherence functional for multiconfiguration density‐coherence functional theory Excited state relaxation mechanisms of paracetamol and acetanilide. Stable, aromatic, and electrophilic azepinium ions: Design using quantum chemical methods Assessing small molecule conformational sampling methods in molecular docking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1