Jie Sun, Yan Liu, Jinjin Zhang, Huilin Shi, Rujiao Jiang, Meihua Guo, Yilin Liu, Bo Liu, Ning Wang, Rui Ma, Danna Zhang, Fang Zhang, Shujing Wang, Yingjie Wu
{"title":"葛根素通过抑制内质网应激减轻胰岛素抵抗,并通过调节高脂饮食小鼠表皮白色脂肪组织中的JNK和IKKβ/NF-κB通路抑制炎症。","authors":"Jie Sun, Yan Liu, Jinjin Zhang, Huilin Shi, Rujiao Jiang, Meihua Guo, Yilin Liu, Bo Liu, Ning Wang, Rui Ma, Danna Zhang, Fang Zhang, Shujing Wang, Yingjie Wu","doi":"10.1002/mnfr.202400003","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <h3> Scope</h3>\n \n <p>Obesity is associated with insulin resistance (IR), which is characterized by endoplasmic reticulum (ER) stress in multiple organs. ER stress in adipose tissue causes metabolic disturbances and activates inflammatory signaling pathways. Puerarin, an isoflavone extracted from <i>Pueraria lobata</i>, exhibits antioxidant, anti-inflammatory, and antidiabetic effects. This study explores the potential mechanisms underlying puerarin's role in mitigating insulin resistance in high-fat diet (HFD)-induced obese mice.</p>\n </section>\n \n <section>\n \n <h3> Methods and results</h3>\n \n <p>In this study, insulin resistant in mice is induced by a high-fat diet, followed by treatment with puerarin. The results demonstrate that puerarin effectively attenuates insulin resistance, including weight loss, improvement of glucose tolerance and insulin sensitivity, and activation of insulin signaling pathway. Additionally, puerarin administration suppresses ER stress by down-regulation of ATF6, ATF4, CHOP, GRP78 expressions in epididymal white adipose tissue (eWAT), along with decreased phosphorylation IRE1α, PERK, and eIF2α. Furthermore, puerarin exerts anti-inflammatory effects by inhibiting JNK and IKKβ/NF-κB pathways, leading to reduction of TNF-α and IL-6.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>These findings suggest that puerarin mitigates insulin resistance by inhibiting ER stress and suppressing inflammation through the JNK and IKKβ/NF-κB pathways. This highlights the promising clinical application of puerarin in the treatment of insulin resistance.</p>\n </section>\n </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 16","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Puerarin Attenuates Insulin Resistance by Inhibiting Endoplasmic Reticulum Stress and Suppresses Inflammation by Modulating the JNK and IKKβ/NF-κB Pathways in Epididymal White Adipose Tissue of Mice on a High-Fat Diet\",\"authors\":\"Jie Sun, Yan Liu, Jinjin Zhang, Huilin Shi, Rujiao Jiang, Meihua Guo, Yilin Liu, Bo Liu, Ning Wang, Rui Ma, Danna Zhang, Fang Zhang, Shujing Wang, Yingjie Wu\",\"doi\":\"10.1002/mnfr.202400003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n <h3> Scope</h3>\\n \\n <p>Obesity is associated with insulin resistance (IR), which is characterized by endoplasmic reticulum (ER) stress in multiple organs. ER stress in adipose tissue causes metabolic disturbances and activates inflammatory signaling pathways. Puerarin, an isoflavone extracted from <i>Pueraria lobata</i>, exhibits antioxidant, anti-inflammatory, and antidiabetic effects. This study explores the potential mechanisms underlying puerarin's role in mitigating insulin resistance in high-fat diet (HFD)-induced obese mice.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods and results</h3>\\n \\n <p>In this study, insulin resistant in mice is induced by a high-fat diet, followed by treatment with puerarin. The results demonstrate that puerarin effectively attenuates insulin resistance, including weight loss, improvement of glucose tolerance and insulin sensitivity, and activation of insulin signaling pathway. Additionally, puerarin administration suppresses ER stress by down-regulation of ATF6, ATF4, CHOP, GRP78 expressions in epididymal white adipose tissue (eWAT), along with decreased phosphorylation IRE1α, PERK, and eIF2α. Furthermore, puerarin exerts anti-inflammatory effects by inhibiting JNK and IKKβ/NF-κB pathways, leading to reduction of TNF-α and IL-6.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>These findings suggest that puerarin mitigates insulin resistance by inhibiting ER stress and suppressing inflammation through the JNK and IKKβ/NF-κB pathways. This highlights the promising clinical application of puerarin in the treatment of insulin resistance.</p>\\n </section>\\n </div>\",\"PeriodicalId\":212,\"journal\":{\"name\":\"Molecular Nutrition & Food Research\",\"volume\":\"68 16\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Nutrition & Food Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mnfr.202400003\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mnfr.202400003","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Puerarin Attenuates Insulin Resistance by Inhibiting Endoplasmic Reticulum Stress and Suppresses Inflammation by Modulating the JNK and IKKβ/NF-κB Pathways in Epididymal White Adipose Tissue of Mice on a High-Fat Diet
Scope
Obesity is associated with insulin resistance (IR), which is characterized by endoplasmic reticulum (ER) stress in multiple organs. ER stress in adipose tissue causes metabolic disturbances and activates inflammatory signaling pathways. Puerarin, an isoflavone extracted from Pueraria lobata, exhibits antioxidant, anti-inflammatory, and antidiabetic effects. This study explores the potential mechanisms underlying puerarin's role in mitigating insulin resistance in high-fat diet (HFD)-induced obese mice.
Methods and results
In this study, insulin resistant in mice is induced by a high-fat diet, followed by treatment with puerarin. The results demonstrate that puerarin effectively attenuates insulin resistance, including weight loss, improvement of glucose tolerance and insulin sensitivity, and activation of insulin signaling pathway. Additionally, puerarin administration suppresses ER stress by down-regulation of ATF6, ATF4, CHOP, GRP78 expressions in epididymal white adipose tissue (eWAT), along with decreased phosphorylation IRE1α, PERK, and eIF2α. Furthermore, puerarin exerts anti-inflammatory effects by inhibiting JNK and IKKβ/NF-κB pathways, leading to reduction of TNF-α and IL-6.
Conclusion
These findings suggest that puerarin mitigates insulin resistance by inhibiting ER stress and suppressing inflammation through the JNK and IKKβ/NF-κB pathways. This highlights the promising clinical application of puerarin in the treatment of insulin resistance.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.