首页 > 最新文献

Molecular Nutrition & Food Research最新文献

英文 中文
Gut Microbiota and Tryptophan Metabolism in Pathogenesis of Ischemic Stroke: A Potential Role for Food Homologous Plants. 缺血性中风发病机制中的肠道微生物群和色氨酸代谢:食物同源植物的潜在作用。
IF 4.5 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-11-17 DOI: 10.1002/mnfr.202400639
Lei Wang, Na Qin, Liuliu Shi, Rujuan Liu, Ting Zhu

Scope: The intestinal flora is involved in the maintenance of human health and the development of diseases, and is closely related to the brain. As an essential amino acid, tryptophan (TRP) participates in a variety of physiological functions in the body and affects the growth and health of the human body. TRP catabolites produced by the gut microbiota are important signaling molecules for microbial communities and host-microbe interactions, and play an important role in maintaining health and disease pathogenesis.

Methods and results: The review first demonstrates the evidence of TRP metabolism in stroke and the relationship between gut microbiota and TRP metabolism. Furthermore, the review reveals that food homologous plants (FHP) bioactive compounds have been shown to regulate various metabolic pathways of the gut microbiota, including the biosynthesis of valine, leucine, isoleucine, and vitamin B6 metabolism. The most notable metabolic alteration is in TRP metabolism.

Conclusion: The interaction between gut microbiota and TRP metabolism offers a plausible explanation for the notable bioactivities of FHP in the treatment of ischemic stroke (IS). This review enhances the comprehension of the underlying mechanisms associated with the bioactivity of FHP on IS.

范围:肠道菌群参与人体健康的维持和疾病的发生,并与大脑密切相关。色氨酸(TRP)作为人体必需的氨基酸,参与体内多种生理功能,影响人体的生长和健康。肠道微生物群产生的TRP代谢产物是微生物群落和宿主-微生物相互作用的重要信号分子,在维持健康和疾病发病机制中发挥着重要作用:综述首先展示了中风中 TRP 代谢的证据以及肠道微生物群与 TRP 代谢之间的关系。此外,综述还揭示了食物同源植物(FHP)生物活性化合物已被证明能调节肠道微生物群的各种代谢途径,包括缬氨酸、亮氨酸、异亮氨酸的生物合成和维生素 B6 的代谢。最显著的代谢改变是 TRP 代谢:结论:肠道微生物群与 TRP 代谢之间的相互作用为 FHP 在治疗缺血性中风(IS)中的显著生物活性提供了一个合理的解释。这篇综述加深了人们对 FHP 对缺血性中风的生物活性相关内在机制的理解。
{"title":"Gut Microbiota and Tryptophan Metabolism in Pathogenesis of Ischemic Stroke: A Potential Role for Food Homologous Plants.","authors":"Lei Wang, Na Qin, Liuliu Shi, Rujuan Liu, Ting Zhu","doi":"10.1002/mnfr.202400639","DOIUrl":"https://doi.org/10.1002/mnfr.202400639","url":null,"abstract":"<p><strong>Scope: </strong>The intestinal flora is involved in the maintenance of human health and the development of diseases, and is closely related to the brain. As an essential amino acid, tryptophan (TRP) participates in a variety of physiological functions in the body and affects the growth and health of the human body. TRP catabolites produced by the gut microbiota are important signaling molecules for microbial communities and host-microbe interactions, and play an important role in maintaining health and disease pathogenesis.</p><p><strong>Methods and results: </strong>The review first demonstrates the evidence of TRP metabolism in stroke and the relationship between gut microbiota and TRP metabolism. Furthermore, the review reveals that food homologous plants (FHP) bioactive compounds have been shown to regulate various metabolic pathways of the gut microbiota, including the biosynthesis of valine, leucine, isoleucine, and vitamin B6 metabolism. The most notable metabolic alteration is in TRP metabolism.</p><p><strong>Conclusion: </strong>The interaction between gut microbiota and TRP metabolism offers a plausible explanation for the notable bioactivities of FHP in the treatment of ischemic stroke (IS). This review enhances the comprehension of the underlying mechanisms associated with the bioactivity of FHP on IS.</p>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":" ","pages":"e2400639"},"PeriodicalIF":4.5,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
α‐Tocopherol Long‐Chain Metabolite α‐T‐13′‐COOH Exhibits Biphasic Effects on Cell Viability, Induces ROS‐Dependent DNA Damage, and Modulates Redox Status in Murine RAW264.7 Macrophages α-生育酚长链代谢物 α-T-13′-COOH 对小鼠 RAW264.7 巨噬细胞的细胞活力、ROS 依赖性 DNA 损伤和氧化还原状态具有双相效应
IF 5.2 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-11-16 DOI: 10.1002/mnfr.202400455
Sijia Liao, Lisa Börmel, Anke Katharina Müller, Luisa Gottschalk, Nadine Pritsch, Lara Zoé Preisner, Oleksandra Samokhina, Maria Schwarz, Anna P. Kipp, Wiebke Schlörmann, Michael Glei, Martin Schubert, Lisa Schmölz, Maria Wallert, Stefan Lorkowski
ScopeThe α‐tocopherol long‐chain metabolite α‐tocopherol‐13′‐hydroxy‐chromanol (α‐T‐13′‐COOH) is a proposed regulatory intermediate of endogenous vitamin E metabolism. Effects of α‐T‐13′‐COOH on cell viability and adaptive stress response are not well understood. The present study aims to investigate the concentration‐dependent effects of α‐T‐13′‐COOH on cellular redox homeostasis, genotoxicity, and cytotoxicity in murine RAW264.7 macrophages as a model system.Methods and resultsMurine RAW264.7 macrophages are exposed to various dosages of α‐T‐13′‐COOH to determine its regulatory effects on reactive oxygen species (ROS) production, DNA damage, expression of stress‐related markers, and the activity of ROS scavenging enzymes including superoxide dismutases, catalase, and glutathione‐S‐transferases. The impact on cell viability is assessed by analyzing cell proliferation, cell cycle arrest, and cell apoptosis.Conclusionα‐T‐13′‐COOH influences ROS production and induces DNA damage in a dose‐dependent manner. The metabolite modulates the activity of ROS‐scavenging enzymes, with significant changes observed in the activities of antioxidant enzymes. A biphasic response affecting cell viability is noted: sub‐micromolar doses of α‐T‐13′‐COOH promote cell proliferation and enhance DNA synthesis, whereas supraphysiological doses lead to DNA damage and cytotoxicity. It hypothesizes an adaptive stress response, characterized by upregulation of ROS detoxification mechanisms, enhanced cell cycle arrest, and increased apoptosis, indicating a correlation with oxidative stress and subsequent cellular damage.
范围α-生育酚长链代谢产物α-生育酚-13′-羟基色醇(α-T-13′-COOH)是一种拟议的内源性维生素 E 代谢调节中间产物。α-T-13′-COOH对细胞活力和适应性应激反应的影响尚不十分清楚。本研究旨在以小鼠 RAW264.7 巨噬细胞为模型系统,研究 α-T-13′-COOH 对细胞氧化还原平衡、基因毒性和细胞毒性的浓度依赖性影响。7巨噬细胞暴露于不同剂量的α-T-13′-COOH,以确定其对活性氧(ROS)产生、DNA损伤、应激相关标志物的表达以及ROS清除酶(包括超氧化物歧化酶、过氧化氢酶和谷胱甘肽-S-转移酶)活性的调节作用。结论α-T-13′-COOH 以剂量依赖的方式影响 ROS 的产生并诱导 DNA 损伤。这种代谢物会调节 ROS 清除酶的活性,抗氧化酶的活性也会发生显著变化。我们注意到影响细胞活力的双相反应:亚微摩尔剂量的 α-T-13′-COOH 可促进细胞增殖并增强 DNA 合成,而超生理剂量则会导致 DNA 损伤和细胞毒性。该研究假设了一种适应性应激反应,其特点是上调 ROS 解毒机制、加强细胞周期停滞和增加细胞凋亡,这表明与氧化应激和随后的细胞损伤有关。
{"title":"α‐Tocopherol Long‐Chain Metabolite α‐T‐13′‐COOH Exhibits Biphasic Effects on Cell Viability, Induces ROS‐Dependent DNA Damage, and Modulates Redox Status in Murine RAW264.7 Macrophages","authors":"Sijia Liao, Lisa Börmel, Anke Katharina Müller, Luisa Gottschalk, Nadine Pritsch, Lara Zoé Preisner, Oleksandra Samokhina, Maria Schwarz, Anna P. Kipp, Wiebke Schlörmann, Michael Glei, Martin Schubert, Lisa Schmölz, Maria Wallert, Stefan Lorkowski","doi":"10.1002/mnfr.202400455","DOIUrl":"https://doi.org/10.1002/mnfr.202400455","url":null,"abstract":"ScopeThe α‐tocopherol long‐chain metabolite α‐tocopherol‐13′‐hydroxy‐chromanol (α‐T‐13′‐COOH) is a proposed regulatory intermediate of endogenous vitamin E metabolism. Effects of α‐T‐13′‐COOH on cell viability and adaptive stress response are not well understood. The present study aims to investigate the concentration‐dependent effects of α‐T‐13′‐COOH on cellular redox homeostasis, genotoxicity, and cytotoxicity in murine RAW264.7 macrophages as a model system.Methods and resultsMurine RAW264.7 macrophages are exposed to various dosages of α‐T‐13′‐COOH to determine its regulatory effects on reactive oxygen species (ROS) production, DNA damage, expression of stress‐related markers, and the activity of ROS scavenging enzymes including superoxide dismutases, catalase, and glutathione‐S‐transferases. The impact on cell viability is assessed by analyzing cell proliferation, cell cycle arrest, and cell apoptosis.Conclusionα‐T‐13′‐COOH influences ROS production and induces DNA damage in a dose‐dependent manner. The metabolite modulates the activity of ROS‐scavenging enzymes, with significant changes observed in the activities of antioxidant enzymes. A biphasic response affecting cell viability is noted: sub‐micromolar doses of α‐T‐13′‐COOH promote cell proliferation and enhance DNA synthesis, whereas supraphysiological doses lead to DNA damage and cytotoxicity. It hypothesizes an adaptive stress response, characterized by upregulation of ROS detoxification mechanisms, enhanced cell cycle arrest, and increased apoptosis, indicating a correlation with oxidative stress and subsequent cellular damage.","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"166 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic Interplay of Diet, Gut Microbiota, and Insulin Resistance: Unraveling the Molecular Nexus 饮食、肠道微生物群和胰岛素抵抗的协同作用:揭示分子关联
IF 5.2 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-11-16 DOI: 10.1002/mnfr.202400677
Rajesh Kanna Gopal, Pitchaipillai Sankar Ganesh, Naji Naseef Pathoor
This comprehensive review explores the intricate relationship between gut microbiota, diet, and insulin resistance, emphasizing the novel roles of diet-induced microbial changes in influencing metabolic health. It highlights how diet significantly influences gut microbiota composition, with different dietary patterns fostering diverse microbial communities. These diet-induced changes in the microbiome impact human metabolism by affecting inflammation, energy balance, and insulin sensitivity, particularly through microbial metabolites like short-chain fatty acids (SCFAs). Focusing the key mediators like endotoxemia and systemic inflammation, and introduces personalized microbiome-based therapeutic strategies, it also investigates the effects of dietary components—fiber, polyphenols, and lipids—on microbiota and insulin sensitivity, along with the roles of protein intake and amino acid metabolism. The study compares the effects of Western and Mediterranean diets on the microbiota-insulin resistance axis. Therapeutic implications, including probiotics, fecal microbiota transplantation (FMT), and personalized diets, are discussed. Key findings reveal that high-fat diets, especially those rich in saturated fats, contribute to dysbiosis and increased intestinal permeability, while high-fiber diets promote beneficial bacteria and SCFAs. The review underscores the future potential of food and microbiota interventions for preventing or managing insulin resistance.
这篇综合性综述探讨了肠道微生物群、饮食和胰岛素抵抗之间错综复杂的关系,强调了饮食引起的微生物变化在影响代谢健康方面的新作用。该研究强调了饮食如何显著影响肠道微生物群的组成,不同的饮食模式会培育出不同的微生物群落。这些由饮食引起的微生物群变化通过影响炎症、能量平衡和胰岛素敏感性,特别是通过短链脂肪酸(SCFAs)等微生物代谢产物,对人体代谢产生影响。该研究重点关注内毒素血症和全身性炎症等关键介质,并介绍了基于微生物组的个性化治疗策略,还研究了膳食成分--纤维、多酚和脂类--对微生物群和胰岛素敏感性的影响,以及蛋白质摄入和氨基酸代谢的作用。该研究比较了西方饮食和地中海饮食对微生物群-胰岛素抵抗轴的影响。研究还讨论了治疗意义,包括益生菌、粪便微生物群移植(FMT)和个性化饮食。主要研究结果表明,高脂肪饮食,尤其是富含饱和脂肪的饮食,会导致肠道菌群失调和肠道渗透性增加,而高纤维饮食则能促进有益菌和 SCFAs 的生长。综述强调了食物和微生物群干预在预防或控制胰岛素抵抗方面的未来潜力。
{"title":"Synergistic Interplay of Diet, Gut Microbiota, and Insulin Resistance: Unraveling the Molecular Nexus","authors":"Rajesh Kanna Gopal, Pitchaipillai Sankar Ganesh, Naji Naseef Pathoor","doi":"10.1002/mnfr.202400677","DOIUrl":"https://doi.org/10.1002/mnfr.202400677","url":null,"abstract":"This comprehensive review explores the intricate relationship between gut microbiota, diet, and insulin resistance, emphasizing the novel roles of diet-induced microbial changes in influencing metabolic health. It highlights how diet significantly influences gut microbiota composition, with different dietary patterns fostering diverse microbial communities. These diet-induced changes in the microbiome impact human metabolism by affecting inflammation, energy balance, and insulin sensitivity, particularly through microbial metabolites like short-chain fatty acids (SCFAs). Focusing the key mediators like endotoxemia and systemic inflammation, and introduces personalized microbiome-based therapeutic strategies, it also investigates the effects of dietary components—fiber, polyphenols, and lipids—on microbiota and insulin sensitivity, along with the roles of protein intake and amino acid metabolism. The study compares the effects of Western and Mediterranean diets on the microbiota-insulin resistance axis. Therapeutic implications, including probiotics, fecal microbiota transplantation (FMT), and personalized diets, are discussed. Key findings reveal that high-fat diets, especially those rich in saturated fats, contribute to dysbiosis and increased intestinal permeability, while high-fiber diets promote beneficial bacteria and SCFAs. The review underscores the future potential of food and microbiota interventions for preventing or managing insulin resistance.","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"12 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overweight Leads to an Increase in Vitamin E Absorption and Status in Mice 超重会导致小鼠维生素 E 的吸收和状态增加
IF 5.2 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-11-16 DOI: 10.1002/mnfr.202400509
Katherine Alvarado‐Ramos, Ángela Bravo‐Núñez, Donato Vairo, Charlotte Sabran, Jean‐François Landrier, Emmanuelle Reboul
ScopeThis study investigates whether vitamin E (VE) deficiency in subjects with obesity could, at least partly, be due to a defect in VE intestinal absorption.Methods and resultsMice follow either a high‐fat (HF) or a control (CTL) diet for 12 weeks. The study evaluates their VE status, the expression of genes encoding proteins involved in lipid and fat‐soluble vitamin intestinal absorption, and VE absorption using a γ‐tocopherol‐rich emulsion. HF mice have a weight (+23.0%) and an adiposity index (AI, +157.0) superior to CTL mice (p < 0.05). α‐Tocopherol concentrations are higher in both plasma (+45.0%) and liver (+116.9%) of HF mice compared to CTL mice (p < 0.05). α‐Tocopherol concentration in the adipose tissue of HF mice is higher than that of CTL mice after correction by the AI (+72.4%, p < 0.05). No difference is found in the expression of genes coding for proteins involved in intestinal lipid metabolism in fasting mice. After force‐feeding, γ‐tocopherol plasma concentration is higher in HF mice compared to CTL mice (+181.5% at 1.5 h after force‐feeding, p < 0.05).ConclusionHF mice display higher status and more efficient absorption of VE than CTL mice. VE absorption is thus likely not impaired in the early stages of obesity.
范围本研究探讨肥胖症患者缺乏维生素 E(VE)是否至少部分是由于 VE 肠道吸收缺陷所致。研究使用富含γ-生育酚的乳液对小鼠的 VE 状态、编码参与脂质和脂溶性维生素肠道吸收的蛋白质的基因表达以及 VE 吸收情况进行了评估。HF 小鼠的体重(+23.0%)和脂肪指数(AI,+157.0)均优于 CTL 小鼠(p < 0.05)。与 CTL 小鼠相比,高频小鼠血浆(+45.0%)和肝脏(+116.9%)中的 α-生育酚浓度更高(p < 0.05)。经 AI 校正后,HF 小鼠脂肪组织中的α-生育酚浓度高于 CTL 小鼠(+72.4%,p <0.05)。空腹小鼠肠道脂质代谢蛋白编码基因的表达没有差异。与 CTL 小鼠相比,强制喂食后,HF 小鼠血浆中的γ-生育酚浓度更高(强制喂食后 1.5 小时时为 +181.5%,p < 0.05)。因此,在肥胖的早期阶段,VE的吸收可能不会受到影响。
{"title":"Overweight Leads to an Increase in Vitamin E Absorption and Status in Mice","authors":"Katherine Alvarado‐Ramos, Ángela Bravo‐Núñez, Donato Vairo, Charlotte Sabran, Jean‐François Landrier, Emmanuelle Reboul","doi":"10.1002/mnfr.202400509","DOIUrl":"https://doi.org/10.1002/mnfr.202400509","url":null,"abstract":"ScopeThis study investigates whether vitamin E (VE) deficiency in subjects with obesity could, at least partly, be due to a defect in VE intestinal absorption.Methods and resultsMice follow either a high‐fat (HF) or a control (CTL) diet for 12 weeks. The study evaluates their VE status, the expression of genes encoding proteins involved in lipid and fat‐soluble vitamin intestinal absorption, and VE absorption using a γ‐tocopherol‐rich emulsion. HF mice have a weight (+23.0%) and an adiposity index (AI, +157.0) superior to CTL mice (<jats:italic>p</jats:italic> &lt; 0.05). α‐Tocopherol concentrations are higher in both plasma (+45.0%) and liver (+116.9%) of HF mice compared to CTL mice (<jats:italic>p</jats:italic> &lt; 0.05). α‐Tocopherol concentration in the adipose tissue of HF mice is higher than that of CTL mice after correction by the AI (+72.4%, <jats:italic>p</jats:italic> &lt; 0.05). No difference is found in the expression of genes coding for proteins involved in intestinal lipid metabolism in fasting mice. After force‐feeding, γ‐tocopherol plasma concentration is higher in HF mice compared to CTL mice (+181.5% at 1.5 h after force‐feeding, <jats:italic>p</jats:italic> &lt; 0.05).ConclusionHF mice display higher status and more efficient absorption of VE than CTL mice. VE absorption is thus likely not impaired in the early stages of obesity.","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"21 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Mol. Nutr. Food Res. 21'24 发行信息:Mol.Nutr.21'24
IF 4.5 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-11-16 DOI: 10.1002/mnfr.202470034
{"title":"Issue Information: Mol. Nutr. Food Res. 21'24","authors":"","doi":"10.1002/mnfr.202470034","DOIUrl":"10.1002/mnfr.202470034","url":null,"abstract":"","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 21","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202470034","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polysaccharides from Cordyceps cicadae Ameliorate Reproductive Impairments in Male Mouse through the Hypothalamic-Pituitary-Testicular Axis. 冬虫夏草多糖通过下丘脑-垂体-睾丸轴改善雄性小鼠的生殖功能障碍
IF 4.5 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-11-14 DOI: 10.1002/mnfr.202400446
Fen Wu, Meilin Wang, Xiaoyue Chen, Dongchen Zhang, Wei Peng, Xinyi Hu, Haoran Xu, WenNa Zhang, Chao Yan, Yongming Lu, Min Sun, Yan Chen, Lei Chen

Scope: Cordyceps cicadae polysaccharides have received attention due to their potential in treating hyperglycemia and enhancing renal function. The beneficial effect of the purified C. cicadae polysaccharides fraction (CCP-1) on the reproductive impairments and spermatogenesis dysfunction of immunocompromised mice is unavailable and is studied herein.

Methods and results: The study establishes a GC-1 spg cell apoptosis model induced by TNF-α+SM-164 (TS) and male mouse reproductive injury model induced by cyclophosphamide (CTX), and then intervened by CCP-1. CCP-1 improves the viability of GC-1 spg cell and inhibits cells apoptosis induced by TS in vitro. CCP-1 enhances sperm quality and spermatogenesis function, as well as ameliorating the histological lesions in the hypothalamus, testicular, and kidney. CCP-1 elevates gonadotropin-releasing hormone (GnRH) level that secreted by the hypothalamus, and increases the levels of follicle stimulating hormone (FSH) and luteizing hormone (LH) in the anterior pituitary stimulated by GnRH, and promotes the secretion of testosterone (T) by testis. Moreover, CCP-1 could protect the reproductive system by activating reproductive regulatory pathway such as SCF/C-kit pathway and inhibiting apoptotic signaling pathway such as Bax/Caspase-3 pathway.

Conclusion: These results manifest that CCP-1 could serve as a natural promising reproductive system protective supplement for ameliorating CTX biotoxicity.

范围:冬虫夏草多糖因其在治疗高血糖和增强肾功能方面的潜力而备受关注。纯化的冬虫夏草多糖部分(CCP-1)对免疫缺陷小鼠的生殖功能障碍和精子发生功能障碍的有益作用尚不可得,本文对其进行了研究:本研究建立了 TNF-α+SM-164 (TS)诱导的 GC-1 spg 细胞凋亡模型和环磷酰胺(CTX)诱导的雄性小鼠生殖损伤模型,然后用 CCP-1 进行干预。CCP-1 在体外提高了 GC-1 spg 细胞的活力,抑制了 TS 诱导的细胞凋亡。CCP-1 可提高精子质量和生精功能,改善下丘脑、睾丸和肾脏的组织学病变。CCP-1 能提高下丘脑分泌的促性腺激素释放激素(GnRH)水平,并在 GnRH 的刺激下提高垂体前叶促卵泡激素(FSH)和黄体生成素(LH)的水平,促进睾丸分泌睾酮(T)。此外,CCP-1还能激活SCF/C-kit通路等生殖调节通路,抑制Bax/Caspase-3通路等细胞凋亡信号通路,从而保护生殖系统:这些结果表明,CCP-1 可以作为一种天然的生殖系统保护补充剂,用于改善 CTX 的生物毒性。
{"title":"Polysaccharides from Cordyceps cicadae Ameliorate Reproductive Impairments in Male Mouse through the Hypothalamic-Pituitary-Testicular Axis.","authors":"Fen Wu, Meilin Wang, Xiaoyue Chen, Dongchen Zhang, Wei Peng, Xinyi Hu, Haoran Xu, WenNa Zhang, Chao Yan, Yongming Lu, Min Sun, Yan Chen, Lei Chen","doi":"10.1002/mnfr.202400446","DOIUrl":"https://doi.org/10.1002/mnfr.202400446","url":null,"abstract":"<p><strong>Scope: </strong>Cordyceps cicadae polysaccharides have received attention due to their potential in treating hyperglycemia and enhancing renal function. The beneficial effect of the purified C. cicadae polysaccharides fraction (CCP-1) on the reproductive impairments and spermatogenesis dysfunction of immunocompromised mice is unavailable and is studied herein.</p><p><strong>Methods and results: </strong>The study establishes a GC-1 spg cell apoptosis model induced by TNF-α+SM-164 (TS) and male mouse reproductive injury model induced by cyclophosphamide (CTX), and then intervened by CCP-1. CCP-1 improves the viability of GC-1 spg cell and inhibits cells apoptosis induced by TS in vitro. CCP-1 enhances sperm quality and spermatogenesis function, as well as ameliorating the histological lesions in the hypothalamus, testicular, and kidney. CCP-1 elevates gonadotropin-releasing hormone (GnRH) level that secreted by the hypothalamus, and increases the levels of follicle stimulating hormone (FSH) and luteizing hormone (LH) in the anterior pituitary stimulated by GnRH, and promotes the secretion of testosterone (T) by testis. Moreover, CCP-1 could protect the reproductive system by activating reproductive regulatory pathway such as SCF/C-kit pathway and inhibiting apoptotic signaling pathway such as Bax/Caspase-3 pathway.</p><p><strong>Conclusion: </strong>These results manifest that CCP-1 could serve as a natural promising reproductive system protective supplement for ameliorating CTX biotoxicity.</p>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":" ","pages":"e2400446"},"PeriodicalIF":4.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yeast Extract Peptides Alleviate Depression in Chronic Restraint Stress Rats by Alleviating Hippocampal Neuronal Apoptosis and Dysbiosis of the Gut Microbiota 酵母提取物肽通过缓解海马神经元凋亡和肠道微生物群失调减轻慢性束缚应激大鼠的抑郁情绪
IF 4.5 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-10-21 DOI: 10.1002/mnfr.202300467
Zebin Zou, Nan Xiao, Zhixian Chen, Xucong Lin, Yaqi Li, Pan Li, Qian Cheng, Bing Du

Scope

Depression as a global neurological disorder, and hippocampal neuronal apoptosis and disorders of the gut microbiota are closely related to it. This study aims to expose the ameliorative effect of enzyme peptides (AP) from brewer's yeast on depressive behavior caused by chronic restraint stress (CRS) in rats.

Methods and results

After 4 weeks of AP intervention, a significant alleviation of depressive behavior in the sucrose preference test (SPT), forced swim test (FST), and light-dark test (LDT) is observed in depressed rats. AP ameliorates neuronal damage with increased the expression of the key CREB/BDNF/TrkB/Akt signaling pathway, which increases the levels of the monoamine neurotransmitters 5-hydroxytryptamine (5-HT) and norepinephrine (NE) in the hippocampus, buffering hyperactivity of the hypothalamo-pituitary-adrenal axis (HPA), and decreasing the serum cortisol (CORT) and adrenocorticotropic hormone (ACTH) levels in rats. In addition, AP modulates the disruption of the rat gut microbiota by chronic restraint stress (CRS), and the changes in the abundance of Lactobacillus animalis and Lactobacillus johnsonii are probably the key for AP performing antidepressant benefits. A strong correlation is found between gut microbiota and biochemical markers of depression.

Conclusion

AP, as a natural and safe active substance, has a positive effect in the treatment of depression.

抑郁症是一种全球性神经系统疾病,与海马神经元凋亡和肠道微生物群紊乱密切相关。本研究旨在揭示酿酒酵母中的酶肽(AP)对慢性束缚应激(CRS)导致的大鼠抑郁行为的改善作用。
{"title":"Yeast Extract Peptides Alleviate Depression in Chronic Restraint Stress Rats by Alleviating Hippocampal Neuronal Apoptosis and Dysbiosis of the Gut Microbiota","authors":"Zebin Zou,&nbsp;Nan Xiao,&nbsp;Zhixian Chen,&nbsp;Xucong Lin,&nbsp;Yaqi Li,&nbsp;Pan Li,&nbsp;Qian Cheng,&nbsp;Bing Du","doi":"10.1002/mnfr.202300467","DOIUrl":"10.1002/mnfr.202300467","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>Depression as a global neurological disorder, and hippocampal neuronal apoptosis and disorders of the gut microbiota are closely related to it. This study aims to expose the ameliorative effect of enzyme peptides (AP) from brewer's yeast on depressive behavior caused by chronic restraint stress (CRS) in rats.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>After 4 weeks of AP intervention, a significant alleviation of depressive behavior in the sucrose preference test (SPT), forced swim test (FST), and light-dark test (LDT) is observed in depressed rats. AP ameliorates neuronal damage with increased the expression of the key CREB/BDNF/TrkB/Akt signaling pathway, which increases the levels of the monoamine neurotransmitters 5-hydroxytryptamine (5-HT) and norepinephrine (NE) in the hippocampus, buffering hyperactivity of the hypothalamo-pituitary-adrenal axis (HPA), and decreasing the serum cortisol (CORT) and adrenocorticotropic hormone (ACTH) levels in rats. In addition, AP modulates the disruption of the rat gut microbiota by chronic restraint stress (CRS), and the changes in the abundance of <i>Lactobacillus animalis</i> and <i>Lactobacillus johnsonii</i> are probably the key for AP performing antidepressant benefits. A strong correlation is found between gut microbiota and biochemical markers of depression.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>AP, as a natural and safe active substance, has a positive effect in the treatment of depression.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 21","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Mix of Probiotic Strains Prevents Hepatic Steatosis, and Improves Oxidative Stress Status and Gut Microbiota Composition in Obese Mice 混合益生菌株可预防肝脏脂肪变性,改善肥胖小鼠的氧化应激状态和肠道微生物群组成
IF 4.5 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-10-17 DOI: 10.1002/mnfr.202300672
Chenglin Guo, Shengduo He, Mélanie Le Barz, Sylvie Binda, Huahong Wang

Scope

The gut microbiota plays a role in fat accumulation and energy homeostasis. Therefore, probiotic supplementation may improve metabolic parameters and control body weight.

Methods and results

In this study, mice are fed either a high-fat diet (HFD) or an HFD supplemented with oral gavage of a mixture of three probiotic strains, Bifidobacterium lactis Lafti B94, Lactobacillus plantarum HA-119, and Lactobacillus helveticus Lafti L10 for 7 weeks. It finds that probiotic supplementation modulates body weight gain, food energy efficiency, and fat accumulation caused by the HFD. This probiotic mix prevents liver damage and lipid metabolic disorders in HFD-fed obese mice. The probiotic supplementation significantly downregulates the expression of the proinflammatory cytokines interleukin-1β, tumor necrosis factor-α, and malondialdehyde (MDA) in the liver and upregulated catalase (CAT), superoxide dismutase (SOD), and nuclear respiratory factor 1 (Nrf1) expression. Mice supplemented with the probiotic mix also show different microbiota compositions, with an increase in Clostridia_UCG-014 and Lachnospiraceae_nk4a136_group and a decrease in the Dubosiella genus compared with those in mice fed only an HFD. Finally, the amounts of fecal pentanoic acid and the three bile acid species increase in mice with probiotic supplementation.

Conclusion

Treatment with a combination of a mixture of three probiotic strains, B. lactis Lafti B94, L. plantarum HA-119, and L. helveticus Lafti L10 for 7 weeks, ameliorates the effects of HFD induced obesity in mice.

摘要肠道微生物群在脂肪积累和能量平衡中发挥作用。因此,补充益生菌可改善代谢参数并控制体重。方法和结果在本研究中,小鼠被喂食高脂饮食(HFD)或口服三种益生菌菌株混合物(乳双歧杆菌 Lafti B94、植物乳杆菌 HA-119 和螺旋乳杆菌 Lafti L10)7 周。研究发现,补充益生菌可调节体重增加、食物能量效率以及高密度脂蛋白食物引起的脂肪积累。这种益生菌混合物可预防高纤维食物喂养肥胖小鼠的肝损伤和脂质代谢紊乱。补充益生菌后,白细胞介素-1β、肿瘤坏死因子-α和丙二醛(MDA)等促炎细胞因子在肝脏中的表达明显下调,过氧化氢酶(CAT)、超氧化物歧化酶(SOD)和核呼吸因子1(Nrf1)的表达上调。与只摄入高纤维食物的小鼠相比,补充益生菌混合物的小鼠也表现出不同的微生物群组成,梭菌_UCG-014 和 Lachnospiraceae_nk4a136_group 增加,而杜博斯菌属减少。最后,补充益生菌后,小鼠粪便中戊酸和三种胆汁酸的含量增加。结论连续 7 周服用三种益生菌菌株(B. lactis Lafti B94、L. plantarum HA-119 和 L. helveticus Lafti L10)的混合物可改善高纤维食物诱发小鼠肥胖的影响。
{"title":"A Mix of Probiotic Strains Prevents Hepatic Steatosis, and Improves Oxidative Stress Status and Gut Microbiota Composition in Obese Mice","authors":"Chenglin Guo,&nbsp;Shengduo He,&nbsp;Mélanie Le Barz,&nbsp;Sylvie Binda,&nbsp;Huahong Wang","doi":"10.1002/mnfr.202300672","DOIUrl":"10.1002/mnfr.202300672","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>The gut microbiota plays a role in fat accumulation and energy homeostasis. Therefore, probiotic supplementation may improve metabolic parameters and control body weight.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>In this study, mice are fed either a high-fat diet (HFD) or an HFD supplemented with oral gavage of a mixture of three probiotic strains, <i>Bifidobacterium lactis</i> Lafti B94, <i>Lactobacillus plantarum</i> HA-119, and <i>Lactobacillus helveticus</i> Lafti L10 for 7 weeks. It finds that probiotic supplementation modulates body weight gain, food energy efficiency, and fat accumulation caused by the HFD. This probiotic mix prevents liver damage and lipid metabolic disorders in HFD-fed obese mice. The probiotic supplementation significantly downregulates the expression of the proinflammatory cytokines interleukin-1β, tumor necrosis factor-α, and malondialdehyde (MDA) in the liver and upregulated catalase (CAT), superoxide dismutase (SOD), and nuclear respiratory factor 1 (Nrf1) expression. Mice supplemented with the probiotic mix also show different microbiota compositions, with an increase in <i>Clostridia_UCG-014</i> and <i>Lachnospiraceae_nk4a136_group</i> and a decrease in the <i>Dubosiella</i> genus compared with those in mice fed only an HFD. Finally, the amounts of fecal pentanoic acid and the three bile acid species increase in mice with probiotic supplementation.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Treatment with a combination of a mixture of three probiotic strains, <i>B. lactis</i> Lafti B94, <i>L. plantarum</i> HA-119, and <i>L. helveticus</i> Lafti L10 for 7 weeks, ameliorates the effects of HFD induced obesity in mice.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 21","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nicotinamide Mononucleotide Improves Endometrial Homeostasis in a Rat Model of Polycystic Ovary Syndrome by Decreasing Insulin Resistance and Regulating the Glylytic Pathway 烟酰胺单核苷酸通过降低胰岛素抵抗和调节糖化途径改善多囊卵巢综合征大鼠模型的子宫内膜稳态
IF 4.5 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-10-17 DOI: 10.1002/mnfr.202400340
Wenhui Zhang, Jiaming Zhang, Haoxuan Xue, Xi Chen, Meixiang Li, Shenghua Chen, Zhiling Li, Leonardo Antonio Sechi, Qian Wang, Giampiero Capobianco, Xiaocan Lei

Scope

Polycystic ovary syndrome (PCOS) is a common endocrine disorder that can lead to insulin resistance (IR) and dysregulation of glucose metabolism, resulting in an imbalance in the endometrial environment, which is unfavorable for embryo implantation of PCOS. This study aims to investigate whether nicotinamide mononucleotide (NMN) improves the stability of the endometrium in a rat model of PCOS and identifies whether it is related to reduce IR and increase glycolysis levels and its potential signaling pathway.

Methods and results

Female Sprague-Dawley (SD) rats are fed letrozole and a high-fat diet (HFD) to form the PCOS model, then the model rats are treated with or without NMN. It randomly divided into control, PCOS, and PCOS-NMN groups according to the feeding and treating method. Compared with the PCOS group, the regular estrous cycles are restored, the serum androgen (p<0.01) and fasting insulin levels (p<0.05) are reduced, and endometrial morphology (p<0.05) is improved in NMN-PCOS group. Furthermore, NMN inhibits endometrial cell apoptosis, improves endometrial decidualization transition, reduces IR, restores the expression of glycolysis rate-limiting enzymes, and activates the PI3K/AKT pathway in the uterus.

Conclusions

These results suggest that NMN enhances endometrial tissue homeostasis by decreasing uterine IR and regulating the glycolysis through the PI3K/AKT pathway.

SCOPEP多囊卵巢综合征(PCOS)是一种常见的内分泌疾病,可导致胰岛素抵抗(IR)和糖代谢失调,造成子宫内膜环境失衡,不利于PCOS胚胎着床。本研究旨在探讨烟酰胺单核苷酸(NMN)是否能改善 PCOS 大鼠模型中子宫内膜的稳定性,并确定其是否与降低 IR 和提高糖酵解水平有关及其潜在的信号通路。方法和结果将雌性 Sprague-Dawley (SD) 大鼠饲喂来曲唑和高脂饮食 (HFD) 以形成 PCOS 模型,然后用或不用 NMN 处理模型大鼠。根据喂养和治疗方法随机分为对照组、PCOS 组和 PCOS-NMN 组。与多囊卵巢综合征组相比,NMN-多囊卵巢综合征组大鼠的发情周期恢复正常,血清雄激素水平(p<0.01)和空腹胰岛素水平(p<0.05)降低,子宫内膜形态改善(p<0.05)。此外,NMN 可抑制子宫内膜细胞凋亡,改善子宫内膜蜕膜化转变,降低 IR,恢复糖酵解限速酶的表达,并激活子宫内的 PI3K/AKT 通路。
{"title":"Nicotinamide Mononucleotide Improves Endometrial Homeostasis in a Rat Model of Polycystic Ovary Syndrome by Decreasing Insulin Resistance and Regulating the Glylytic Pathway","authors":"Wenhui Zhang,&nbsp;Jiaming Zhang,&nbsp;Haoxuan Xue,&nbsp;Xi Chen,&nbsp;Meixiang Li,&nbsp;Shenghua Chen,&nbsp;Zhiling Li,&nbsp;Leonardo Antonio Sechi,&nbsp;Qian Wang,&nbsp;Giampiero Capobianco,&nbsp;Xiaocan Lei","doi":"10.1002/mnfr.202400340","DOIUrl":"10.1002/mnfr.202400340","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>Polycystic ovary syndrome (PCOS) is a common endocrine disorder that can lead to insulin resistance (IR) and dysregulation of glucose metabolism, resulting in an imbalance in the endometrial environment, which is unfavorable for embryo implantation of PCOS. This study aims to investigate whether nicotinamide mononucleotide (NMN) improves the stability of the endometrium in a rat model of PCOS and identifies whether it is related to reduce IR and increase glycolysis levels and its potential signaling pathway.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>Female Sprague-Dawley (SD) rats are fed letrozole and a high-fat diet (HFD) to form the PCOS model, then the model rats are treated with or without NMN. It randomly divided into control, PCOS, and PCOS-NMN groups according to the feeding and treating method. Compared with the PCOS group, the regular estrous cycles are restored, the serum androgen (<i>p</i>&lt;0.01) and fasting insulin levels (<i>p</i>&lt;0.05) are reduced, and endometrial morphology (<i>p</i>&lt;0.05) is improved in NMN-PCOS group. Furthermore, NMN inhibits endometrial cell apoptosis, improves endometrial decidualization transition, reduces IR, restores the expression of glycolysis rate-limiting enzymes, and activates the PI3K/AKT pathway in the uterus.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>These results suggest that NMN enhances endometrial tissue homeostasis by decreasing uterine IR and regulating the glycolysis through the PI3K/AKT pathway.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 21","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ruminant Trans Fatty Acid Intake Modulates Inflammation Pathways in the Adipose Tissue Transcriptome of C57BL/6 Mice 反刍动物反式脂肪酸摄入调节 C57BL/6 小鼠脂肪组织转录组中的炎症通路
IF 4.5 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-10-13 DOI: 10.1002/mnfr.202400290
Farzad Mohammadi, Charles Joly Beauparlant, Stéphanie Bianco, Arnaud Droit, Nicolas Bertrand, Iwona Rudkowska

Scope

The study aims to analyze transcriptomic profiles in adipose tissues postconsumption of elaidic acid (EA; trans-18:1n-9) and trans-palmitoleic acid (TPA; trans-16:1n-7), elucidating their different effects on inflammation and glucose metabolism.

Methods and results

Twenty C57BL/6 mice are divided into four groups. Each group receives one of the following formulations in drinking water: lecithin nanovesicles, nanovesicles containing either lecithin with EA or TPA (86:14 w/w), or water (control) for 28 days with a regular fat diet (18% calories from fat). Total RNA is extracted, and paired-end sequencing is performed. TPA intake alters the expression of 351 genes compared to EA intake, including 11 downregulated and 340 upregulated genes (fold change [FC] >1.5, p < 0.05). TPA compares to EA upregulated: Slc5a8, Lcn2, Csf3, Scube1, Mapk13, Bdkrb2, Ctla2a, Slc2a1, Oas3, Cx3cl1, Oas2, Nlrp6, Pycard, Cyba, Ddr1, and Prkab1 and downregulated Fas gene. These genes are related to the NOD-like receptor, lipid and atherosclerosis, IL-17 signaling, TNF, nonalcoholic fatty liver disease, cytokine–cytokine receptor interaction, adipocytokine, glucagon, insulin resistance, and inflammatory mediator regulation of TRP channels signaling.

Conclusion

TPA intake has a distinct impact on the regulation of inflammation and diabetes-related pathways in adipose tissue compared to EA.

该研究旨在分析摄入依来地酸(EA;反式-18:1n-9)和反式棕榈油酸(TPA;反式-16:1n-7)后脂肪组织的转录组特征,阐明它们对炎症和葡萄糖代谢的不同影响。
{"title":"Ruminant Trans Fatty Acid Intake Modulates Inflammation Pathways in the Adipose Tissue Transcriptome of C57BL/6 Mice","authors":"Farzad Mohammadi,&nbsp;Charles Joly Beauparlant,&nbsp;Stéphanie Bianco,&nbsp;Arnaud Droit,&nbsp;Nicolas Bertrand,&nbsp;Iwona Rudkowska","doi":"10.1002/mnfr.202400290","DOIUrl":"10.1002/mnfr.202400290","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>The study aims to analyze transcriptomic profiles in adipose tissues postconsumption of elaidic acid (EA; <i>trans</i>-18:1<i>n</i>-9) and <i>trans</i>-palmitoleic acid (TPA; <i>trans</i>-16:1<i>n</i>-7), elucidating their different effects on inflammation and glucose metabolism.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>Twenty C57BL/6 mice are divided into four groups. Each group receives one of the following formulations in drinking water: lecithin nanovesicles, nanovesicles containing either lecithin with EA or TPA (86:14 w/w), or water (control) for 28 days with a regular fat diet (18% calories from fat). Total RNA is extracted, and paired-end sequencing is performed. TPA intake alters the expression of 351 genes compared to EA intake, including 11 downregulated and 340 upregulated genes (fold change [FC] &gt;1.5, <i>p</i> &lt; 0.05). TPA compares to EA upregulated: Slc5a8, Lcn2, Csf3, Scube1, Mapk13, Bdkrb2, Ctla2a, Slc2a1, Oas3, Cx3cl1, Oas2, Nlrp6, Pycard, Cyba, Ddr1, and Prkab1 and downregulated Fas gene. These genes are related to the NOD-like receptor, lipid and atherosclerosis, IL-17 signaling, TNF, nonalcoholic fatty liver disease, cytokine–cytokine receptor interaction, adipocytokine, glucagon, insulin resistance, and inflammatory mediator regulation of TRP channels signaling.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>TPA intake has a distinct impact on the regulation of inflammation and diabetes-related pathways in adipose tissue compared to EA.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 21","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202400290","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Nutrition & Food Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1