Mário A. Moreira , Madiana M. Moreira , Diego Lomonaco , Eduardo Cáceres , Lukasz Witek , Paulo G. Coelho , Emi Shimizu , Angela Quispe-Salcedo , Victor P. Feitosa
{"title":"新型植物生物改性单体对牙本质纳米力学性能、细胞活力和牙本质润湿性的影响","authors":"Mário A. Moreira , Madiana M. Moreira , Diego Lomonaco , Eduardo Cáceres , Lukasz Witek , Paulo G. Coelho , Emi Shimizu , Angela Quispe-Salcedo , Victor P. Feitosa","doi":"10.1016/j.dental.2024.07.010","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>To evaluate the effects of dentin biomodification agents (Proanthocyanidin (PAC), Cardol (CD) and Cardol-methacrylate (CDMA) on dentin hydrophilicity by contact angle measurement, viability of dental pulp stem cells (DPSCs) and nanomechanical properties of the hybrid layer (HL).</p></div><div><h3>Methods</h3><p>CDMA monomer was synthesized from cardol through methacrylic acid esterification. Human extracted third molars were used for all experiments. For nanomechanical tests, specimens were divided in four groups according to the primer solutions (CD, CDMA, PAC and control) were applied before adhesive and composite coating. Nanomechanical properties of the HL were analyzed by nanoindentation test using a Berkovich probe in a nanoindenter. Wettability test was performed on dentin surfaces after 1 min biomodification and measured by contact angle analysis. Cytotoxicity was assessed by a MTT assay with DPSCs after 48 and 72 h. Data were analyzed with Student's t test or Two-way ANOVA and Tukey HSD test (p < 0.05).</p></div><div><h3>Results</h3><p>CD and CDMA solutions achieved greater hydrophobicity and increased the water-surface contact angles when compared to PAC and control groups (p < 0.05). PAC group showed a greater reduction of elastic modulus in nanoindentation experiments when compared to CD and CDMA groups (p < 0.05) after 4 months of aging. CD inhibited cell proliferation compared to all further materials (p < 0.05), whilst CDMA and PAC indicated no cell cytotoxicity to human DPSCs.</p></div><div><h3>Significance</h3><p>Cardol-methacrylate provided significantly higher hydrophobicity to dentin and demonstrated remarkable potential as collagen crosslinking, attaining the lowest decrease of HL’s mechanical properties. Furthermore, such monomer did not affect pulp cytotoxicity, thereby highlighting promising feasibility for clinical applications.</p></div>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":"40 10","pages":"Pages 1584-1590"},"PeriodicalIF":4.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects on dentin nanomechanical properties, cell viability and dentin wettability of a novel plant-derived biomodification monomer\",\"authors\":\"Mário A. Moreira , Madiana M. Moreira , Diego Lomonaco , Eduardo Cáceres , Lukasz Witek , Paulo G. Coelho , Emi Shimizu , Angela Quispe-Salcedo , Victor P. Feitosa\",\"doi\":\"10.1016/j.dental.2024.07.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><p>To evaluate the effects of dentin biomodification agents (Proanthocyanidin (PAC), Cardol (CD) and Cardol-methacrylate (CDMA) on dentin hydrophilicity by contact angle measurement, viability of dental pulp stem cells (DPSCs) and nanomechanical properties of the hybrid layer (HL).</p></div><div><h3>Methods</h3><p>CDMA monomer was synthesized from cardol through methacrylic acid esterification. Human extracted third molars were used for all experiments. For nanomechanical tests, specimens were divided in four groups according to the primer solutions (CD, CDMA, PAC and control) were applied before adhesive and composite coating. Nanomechanical properties of the HL were analyzed by nanoindentation test using a Berkovich probe in a nanoindenter. Wettability test was performed on dentin surfaces after 1 min biomodification and measured by contact angle analysis. Cytotoxicity was assessed by a MTT assay with DPSCs after 48 and 72 h. Data were analyzed with Student's t test or Two-way ANOVA and Tukey HSD test (p < 0.05).</p></div><div><h3>Results</h3><p>CD and CDMA solutions achieved greater hydrophobicity and increased the water-surface contact angles when compared to PAC and control groups (p < 0.05). PAC group showed a greater reduction of elastic modulus in nanoindentation experiments when compared to CD and CDMA groups (p < 0.05) after 4 months of aging. CD inhibited cell proliferation compared to all further materials (p < 0.05), whilst CDMA and PAC indicated no cell cytotoxicity to human DPSCs.</p></div><div><h3>Significance</h3><p>Cardol-methacrylate provided significantly higher hydrophobicity to dentin and demonstrated remarkable potential as collagen crosslinking, attaining the lowest decrease of HL’s mechanical properties. Furthermore, such monomer did not affect pulp cytotoxicity, thereby highlighting promising feasibility for clinical applications.</p></div>\",\"PeriodicalId\":298,\"journal\":{\"name\":\"Dental Materials\",\"volume\":\"40 10\",\"pages\":\"Pages 1584-1590\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dental Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0109564124002094\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0109564124002094","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Effects on dentin nanomechanical properties, cell viability and dentin wettability of a novel plant-derived biomodification monomer
Objectives
To evaluate the effects of dentin biomodification agents (Proanthocyanidin (PAC), Cardol (CD) and Cardol-methacrylate (CDMA) on dentin hydrophilicity by contact angle measurement, viability of dental pulp stem cells (DPSCs) and nanomechanical properties of the hybrid layer (HL).
Methods
CDMA monomer was synthesized from cardol through methacrylic acid esterification. Human extracted third molars were used for all experiments. For nanomechanical tests, specimens were divided in four groups according to the primer solutions (CD, CDMA, PAC and control) were applied before adhesive and composite coating. Nanomechanical properties of the HL were analyzed by nanoindentation test using a Berkovich probe in a nanoindenter. Wettability test was performed on dentin surfaces after 1 min biomodification and measured by contact angle analysis. Cytotoxicity was assessed by a MTT assay with DPSCs after 48 and 72 h. Data were analyzed with Student's t test or Two-way ANOVA and Tukey HSD test (p < 0.05).
Results
CD and CDMA solutions achieved greater hydrophobicity and increased the water-surface contact angles when compared to PAC and control groups (p < 0.05). PAC group showed a greater reduction of elastic modulus in nanoindentation experiments when compared to CD and CDMA groups (p < 0.05) after 4 months of aging. CD inhibited cell proliferation compared to all further materials (p < 0.05), whilst CDMA and PAC indicated no cell cytotoxicity to human DPSCs.
Significance
Cardol-methacrylate provided significantly higher hydrophobicity to dentin and demonstrated remarkable potential as collagen crosslinking, attaining the lowest decrease of HL’s mechanical properties. Furthermore, such monomer did not affect pulp cytotoxicity, thereby highlighting promising feasibility for clinical applications.
期刊介绍:
Dental Materials publishes original research, review articles, and short communications.
Academy of Dental Materials members click here to register for free access to Dental Materials online.
The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology.
Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.