评估蜂蜡产品中的环境污染。

IF 2.8 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Chromatography B Pub Date : 2024-07-20 DOI:10.1016/j.jchromb.2024.124243
Charline Schaeffer , Claude Schummer , Sarada Scholer , An van Nieuwenhuyse , Justine Pincemaille
{"title":"评估蜂蜡产品中的环境污染。","authors":"Charline Schaeffer ,&nbsp;Claude Schummer ,&nbsp;Sarada Scholer ,&nbsp;An van Nieuwenhuyse ,&nbsp;Justine Pincemaille","doi":"10.1016/j.jchromb.2024.124243","DOIUrl":null,"url":null,"abstract":"<div><p>Beeswaxes are used as a coating agent or as a wrapping material for food products making them potentially ingested by consumers. There is no regulation yet in Europe giving maximum levels of contaminants in this type of product. Nevertheless, being a natural product, they are exposed to environmental pollution, thus it appears necessary to establish their contamination rate in order to evaluate potential human exposure. In this study, a method of extraction of different environmental contaminants including pesticides, phthalates, PAHs and phenols was developed. Based on a hot Soxhlet extraction, followed by cleaning steps, the method was validated for the quantitation of the cited contaminants by LC-MS/MS and GC-(MS)/MS.</p><p>Three different types of waxes were analyzed including typical white waxes (<em>Cera Alba</em>) and yellow waxes (<em>Cera Flava</em>). It was shown that all waxes had the presence of at least one contaminant and that phthalates, in particular DEHP, was present in all beeswax samples. Insecticides were found in majority among all the classes of pesticides screened. The yellow waxes were found to be contaminated with the highest rates of PAHs (60%), pesticides (75%) and phenols (40%). The detection frequency of PAHs, in contrast to phthalates, was the lowest for all the types of waxes combined.</p></div>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1244 ","pages":"Article 124243"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of environmental contamination in beeswax products\",\"authors\":\"Charline Schaeffer ,&nbsp;Claude Schummer ,&nbsp;Sarada Scholer ,&nbsp;An van Nieuwenhuyse ,&nbsp;Justine Pincemaille\",\"doi\":\"10.1016/j.jchromb.2024.124243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Beeswaxes are used as a coating agent or as a wrapping material for food products making them potentially ingested by consumers. There is no regulation yet in Europe giving maximum levels of contaminants in this type of product. Nevertheless, being a natural product, they are exposed to environmental pollution, thus it appears necessary to establish their contamination rate in order to evaluate potential human exposure. In this study, a method of extraction of different environmental contaminants including pesticides, phthalates, PAHs and phenols was developed. Based on a hot Soxhlet extraction, followed by cleaning steps, the method was validated for the quantitation of the cited contaminants by LC-MS/MS and GC-(MS)/MS.</p><p>Three different types of waxes were analyzed including typical white waxes (<em>Cera Alba</em>) and yellow waxes (<em>Cera Flava</em>). It was shown that all waxes had the presence of at least one contaminant and that phthalates, in particular DEHP, was present in all beeswax samples. Insecticides were found in majority among all the classes of pesticides screened. The yellow waxes were found to be contaminated with the highest rates of PAHs (60%), pesticides (75%) and phenols (40%). The detection frequency of PAHs, in contrast to phthalates, was the lowest for all the types of waxes combined.</p></div>\",\"PeriodicalId\":348,\"journal\":{\"name\":\"Journal of Chromatography B\",\"volume\":\"1244 \",\"pages\":\"Article 124243\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570023224002526\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570023224002526","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

蜂蜡被用作食品的涂层剂或包装材料,因此有可能被消费者摄入。欧洲目前还没有规定此类产品中污染物的最高含量。然而,作为一种天然产品,海藻糖会受到环境污染,因此有必要确定其污染率,以评估人类的潜在暴露量。本研究开发了一种提取不同环境污染物(包括杀虫剂、邻苯二甲酸盐、多环芳烃和苯酚)的方法。该方法基于热索氏萃取,然后经过清洗步骤,并通过 LC-MS/MS 和 GC-(MS)/MS 对上述污染物进行了定量验证。分析了三种不同类型的蜡,包括典型的白蜡(Cera Alba)和黄蜡(Cera Flava)。结果表明,所有蜜蜡中都至少含有一种污染物,所有蜜蜡样品中都含有邻苯二甲酸盐,尤其是 DEHP。在筛选的各类杀虫剂中,杀虫剂占大多数。黄蜡中多环芳烃(60%)、杀虫剂(75%)和酚类(40%)的污染率最高。与邻苯二甲酸盐相比,多环芳烃的检测频率在所有类型的蜡中最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of environmental contamination in beeswax products

Beeswaxes are used as a coating agent or as a wrapping material for food products making them potentially ingested by consumers. There is no regulation yet in Europe giving maximum levels of contaminants in this type of product. Nevertheless, being a natural product, they are exposed to environmental pollution, thus it appears necessary to establish their contamination rate in order to evaluate potential human exposure. In this study, a method of extraction of different environmental contaminants including pesticides, phthalates, PAHs and phenols was developed. Based on a hot Soxhlet extraction, followed by cleaning steps, the method was validated for the quantitation of the cited contaminants by LC-MS/MS and GC-(MS)/MS.

Three different types of waxes were analyzed including typical white waxes (Cera Alba) and yellow waxes (Cera Flava). It was shown that all waxes had the presence of at least one contaminant and that phthalates, in particular DEHP, was present in all beeswax samples. Insecticides were found in majority among all the classes of pesticides screened. The yellow waxes were found to be contaminated with the highest rates of PAHs (60%), pesticides (75%) and phenols (40%). The detection frequency of PAHs, in contrast to phthalates, was the lowest for all the types of waxes combined.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chromatography B
Journal of Chromatography B 医学-分析化学
CiteScore
5.60
自引率
3.30%
发文量
306
审稿时长
44 days
期刊介绍: The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis. Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches. Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.
期刊最新文献
Development and validation of a robust RP-HPLC method to quantitate residual 2-mercaptoethylamine in drug product formulations containing amino acid additives. Unraveling the molecular mechanism of aqueous extract of Sargentodoxa cuneata against ulcerative colitis from serum metabolomics and bioinformatics perspectives. Green RP-HPLC method for the estimation of carfilzomib in bulk, protein nanocarriers and human plasma: Application of chemometrics and Monte-Carlo simulations Methylated magnetic covalent organic framework for sample preparation and LC-MS/MS detection of 12 tadalafil analogs in dietary supplements Progress in the technology of solvent flotation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1