CatLearning:根据组蛋白标记进行高精度基因表达预测。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Briefings in bioinformatics Pub Date : 2024-07-25 DOI:10.1093/bib/bbae373
Weining Lu, Yin Tang, Yu Liu, Shiyi Lin, Qifan Shuai, Bin Liang, Rongqing Zhang, Yu Cheng, Dong Fang
{"title":"CatLearning:根据组蛋白标记进行高精度基因表达预测。","authors":"Weining Lu, Yin Tang, Yu Liu, Shiyi Lin, Qifan Shuai, Bin Liang, Rongqing Zhang, Yu Cheng, Dong Fang","doi":"10.1093/bib/bbae373","DOIUrl":null,"url":null,"abstract":"<p><p>Histone modifications, known as histone marks, are pivotal in regulating gene expression within cells. The vast array of potential combinations of histone marks presents a considerable challenge in decoding the regulatory mechanisms solely through biological experimental approaches. To overcome this challenge, we have developed a method called CatLearning. It utilizes a modified convolutional neural network architecture with a specialized adaptation Residual Network to quantitatively interpret histone marks and predict gene expression. This architecture integrates long-range histone information up to 500Kb and learns chromatin interaction features without 3D information. By using only one histone mark, CatLearning achieves a high level of accuracy. Furthermore, CatLearning predicts gene expression by simulating changes in histone modifications at enhancers and throughout the genome. These findings help comprehend the architecture of histone marks and develop diagnostic and therapeutic targets for diseases with epigenetic changes.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285185/pdf/","citationCount":"0","resultStr":"{\"title\":\"CatLearning: highly accurate gene expression prediction from histone mark.\",\"authors\":\"Weining Lu, Yin Tang, Yu Liu, Shiyi Lin, Qifan Shuai, Bin Liang, Rongqing Zhang, Yu Cheng, Dong Fang\",\"doi\":\"10.1093/bib/bbae373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Histone modifications, known as histone marks, are pivotal in regulating gene expression within cells. The vast array of potential combinations of histone marks presents a considerable challenge in decoding the regulatory mechanisms solely through biological experimental approaches. To overcome this challenge, we have developed a method called CatLearning. It utilizes a modified convolutional neural network architecture with a specialized adaptation Residual Network to quantitatively interpret histone marks and predict gene expression. This architecture integrates long-range histone information up to 500Kb and learns chromatin interaction features without 3D information. By using only one histone mark, CatLearning achieves a high level of accuracy. Furthermore, CatLearning predicts gene expression by simulating changes in histone modifications at enhancers and throughout the genome. These findings help comprehend the architecture of histone marks and develop diagnostic and therapeutic targets for diseases with epigenetic changes.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285185/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae373\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae373","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

组蛋白修饰,即组蛋白标记,是调节细胞内基因表达的关键。组蛋白标记的潜在组合种类繁多,这给仅通过生物实验方法解码调控机制带来了巨大挑战。为了克服这一挑战,我们开发了一种名为 CatLearning 的方法。它利用改进的卷积神经网络架构和专门的适应残差网络来定量解释组蛋白标记和预测基因表达。该架构整合了长达 500Kb 的长程组蛋白信息,并在没有三维信息的情况下学习染色质相互作用特征。通过只使用一个组蛋白标记,CatLearning 实现了高水平的准确性。此外,CatLearning 还能通过模拟增强子和整个基因组中组蛋白修饰的变化来预测基因表达。这些发现有助于理解组蛋白标记的结构,并开发出针对表观遗传变化疾病的诊断和治疗目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CatLearning: highly accurate gene expression prediction from histone mark.

Histone modifications, known as histone marks, are pivotal in regulating gene expression within cells. The vast array of potential combinations of histone marks presents a considerable challenge in decoding the regulatory mechanisms solely through biological experimental approaches. To overcome this challenge, we have developed a method called CatLearning. It utilizes a modified convolutional neural network architecture with a specialized adaptation Residual Network to quantitatively interpret histone marks and predict gene expression. This architecture integrates long-range histone information up to 500Kb and learns chromatin interaction features without 3D information. By using only one histone mark, CatLearning achieves a high level of accuracy. Furthermore, CatLearning predicts gene expression by simulating changes in histone modifications at enhancers and throughout the genome. These findings help comprehend the architecture of histone marks and develop diagnostic and therapeutic targets for diseases with epigenetic changes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
期刊最新文献
TUnA: an uncertainty-aware transformer model for sequence-based protein-protein interaction prediction. scLEGA: an attention-based deep clustering method with a tendency for low expression of genes on single-cell RNA-seq data. CatLearning: highly accurate gene expression prediction from histone mark. Detecting novel cell type in single-cell chromatin accessibility data via open-set domain adaptation. Explorer: efficient DNA coding by De Bruijn graph toward arbitrary local and global biochemical constraints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1