以有鳞类为模型,了解脊椎动物的主要牙齿特征。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-26 DOI:10.1016/j.ydbio.2024.07.011
Daria Razmadze, Lotta Salomies, Nicolas Di-Poï
{"title":"以有鳞类为模型,了解脊椎动物的主要牙齿特征。","authors":"Daria Razmadze,&nbsp;Lotta Salomies,&nbsp;Nicolas Di-Poï","doi":"10.1016/j.ydbio.2024.07.011","DOIUrl":null,"url":null,"abstract":"<div><p>Thanks to their exceptional diversity, teeth are among the most distinctive features of vertebrates. Parameters such as tooth size, shape, number, identity, and implantation can have substantial implications for the ecology and certain social behaviors of toothed species. Despite decades of research primarily focused on mammalian dentition, particularly using the laboratory mouse model, squamate reptiles (“lizards” and snakes) offer a wide array of tooth types and dentition variations. This diversity, which includes differences in size, shape, function, and replacement capacity, provides invaluable opportunities for investigating these fundamental properties. The central bearded dragon (<em>Pogona vitticeps</em>), a popular pet species with well-established husbandry practices, is of particular interest. It features a broad spectrum of morphs and spontaneous mutants and exhibits a wide range of heterodont phenotypes, including variation in the size, shape, number, implantation, and renewal of teeth at both posterior and anterior positions. These characteristics position the species as a crucial model organism for developmental studies in tooth research and for gaining deeper insights into evolutionary patterns of vertebrate dentitions. In this article, we provide an overview of the current understanding of squamate dentition, its diversity, development, and replacement. Furthermore, we discuss the significant advantages offered by squamate species as model organisms for investigating the evolutionary and developmental aspects of vertebrate dentition.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S001216062400191X/pdfft?md5=eb854793f141fc998d49b71f2fa28996&pid=1-s2.0-S001216062400191X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Squamates as a model to understand key dental features of vertebrates\",\"authors\":\"Daria Razmadze,&nbsp;Lotta Salomies,&nbsp;Nicolas Di-Poï\",\"doi\":\"10.1016/j.ydbio.2024.07.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thanks to their exceptional diversity, teeth are among the most distinctive features of vertebrates. Parameters such as tooth size, shape, number, identity, and implantation can have substantial implications for the ecology and certain social behaviors of toothed species. Despite decades of research primarily focused on mammalian dentition, particularly using the laboratory mouse model, squamate reptiles (“lizards” and snakes) offer a wide array of tooth types and dentition variations. This diversity, which includes differences in size, shape, function, and replacement capacity, provides invaluable opportunities for investigating these fundamental properties. The central bearded dragon (<em>Pogona vitticeps</em>), a popular pet species with well-established husbandry practices, is of particular interest. It features a broad spectrum of morphs and spontaneous mutants and exhibits a wide range of heterodont phenotypes, including variation in the size, shape, number, implantation, and renewal of teeth at both posterior and anterior positions. These characteristics position the species as a crucial model organism for developmental studies in tooth research and for gaining deeper insights into evolutionary patterns of vertebrate dentitions. In this article, we provide an overview of the current understanding of squamate dentition, its diversity, development, and replacement. Furthermore, we discuss the significant advantages offered by squamate species as model organisms for investigating the evolutionary and developmental aspects of vertebrate dentition.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S001216062400191X/pdfft?md5=eb854793f141fc998d49b71f2fa28996&pid=1-s2.0-S001216062400191X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001216062400191X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001216062400191X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

由于其特殊的多样性,牙齿是脊椎动物最显著的特征之一。牙齿的大小、形状、数量、特征和植入等参数对有齿物种的生态学和某些社会行为有重大影响。尽管数十年来的研究主要集中于哺乳动物的牙齿,特别是利用实验室小鼠模型进行的研究,但有鳞爬行动物("蜥蜴 "和蛇)的牙齿类型和牙齿变化多种多样。这种多样性包括大小、形状、功能和替换能力的差异,为研究这些基本特性提供了宝贵的机会。中央胡须龙(Pogona vitticeps)是一种广受欢迎的宠物物种,饲养方法完善,因此特别引人关注。它具有广泛的形态和自发突变体,并表现出广泛的异齿表型,包括牙齿的大小、形状、数量、植入以及后牙和前牙位置的更新。这些特征使该物种成为牙齿研究中进行发育研究和深入了解脊椎动物牙齿进化模式的重要模式生物。在这篇文章中,我们概述了目前对有鳞类牙齿、其多样性、发育和替换的理解。此外,我们还讨论了有鳞类作为模式生物在研究脊椎动物牙齿的进化和发育方面所具有的显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Squamates as a model to understand key dental features of vertebrates

Thanks to their exceptional diversity, teeth are among the most distinctive features of vertebrates. Parameters such as tooth size, shape, number, identity, and implantation can have substantial implications for the ecology and certain social behaviors of toothed species. Despite decades of research primarily focused on mammalian dentition, particularly using the laboratory mouse model, squamate reptiles (“lizards” and snakes) offer a wide array of tooth types and dentition variations. This diversity, which includes differences in size, shape, function, and replacement capacity, provides invaluable opportunities for investigating these fundamental properties. The central bearded dragon (Pogona vitticeps), a popular pet species with well-established husbandry practices, is of particular interest. It features a broad spectrum of morphs and spontaneous mutants and exhibits a wide range of heterodont phenotypes, including variation in the size, shape, number, implantation, and renewal of teeth at both posterior and anterior positions. These characteristics position the species as a crucial model organism for developmental studies in tooth research and for gaining deeper insights into evolutionary patterns of vertebrate dentitions. In this article, we provide an overview of the current understanding of squamate dentition, its diversity, development, and replacement. Furthermore, we discuss the significant advantages offered by squamate species as model organisms for investigating the evolutionary and developmental aspects of vertebrate dentition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1